Brain, behavior, and immunity
-
Brain Behav. Immun. · Mar 2014
Up-regulation of interleukin-23 induces persistent allodynia via CX3CL1 and interleukin-18 signaling in the rat spinal cord after tetanic sciatic stimulation.
Tetanic stimulation of the sciatic nerve (TSS) induces sciatic nerve injury and long-lasting pain hypersensitivity in rats, and spinal glial activation and proinflammatory cytokines releases are involved. In the present study, we showed that spinal interleukin (IL)-23 and its receptor, IL-23R, are crucial for the development of mechanical allodynia after TSS. In the spinal dorsal horn, both IL-23 and IL-23R are expressed in astrocytes, and this expression is substantially increased after TSS. ⋯ Activation of CX3CR1 and IL-18R induced similar behavioral and biochemical changes to those observed after TSS. These results indicate that the interaction among CX3CL1, IL-18 and IL-23 signaling in the spinal cord plays a critical role in the development of allodynia. Thus, interrupting this chemokine-cytokine network might provide a novel therapeutic strategy for neuropathic pain.