Brain, behavior, and immunity
-
Brain Behav. Immun. · Mar 2015
Alcohol-induced sedation and synergistic interactions between alcohol and morphine: a key mechanistic role for Toll-like receptors and MyD88-dependent signaling.
Increasing evidence demonstrates induction of proinflammatory Toll-like receptor (TLR) 2 and TLR4 signaling by morphine and, TLR4 signaling by alcohol; thus indicating a common site of drug action and a potential novel innate immune-dependent hypothesis for opioid and alcohol drug interactions. Hence, the current study aimed to assess the role of TLR2, TLR4, MyD88 (as a critical TLR-signaling participant), NF-κB, Interleukin-1β (IL-1β; as a downstream proinflammatory effector molecule) and the μ opioid receptor (MOR; as a classical site for morphine action) in acute alcohol-induced sedation (4.5g/kg) and alcohol (2.5g/kg) interaction with morphine (5mg/kg) by assessing the loss of righting reflex (LORR) as a measure of sedation. ⋯ In contrast, the interaction between morphine and alcohol was found to be MOR-, NF-κB-, TLR2- and MyD88-dependent, but did not involve TLR4 or Interleukin-1β. Morphine-alcohol interactions caused acute elevations in microglial cell counts and NF-κB-p65 positive cells in the motor cortex in concordance with wild-type and TLR2 deficient mouse behavioral data, implicating neuroimmunopharmacological signaling as a pivotal mechanism in this clinically problematic drug-drug interaction.
-
Brain Behav. Immun. · Mar 2015
Stromal cell-derived CCL2 drives neuropathic pain states through myeloid cell infiltration in injured nerve.
Neuropathic pain resulting from peripheral nerve injury involves many persistent neuroinflammatory processes including inflammatory chemokines that control leukocyte trafficking and activate resident cells. Several studies have shown that CCL2 chemokine, a potent attractant of monocytes, and its cognate receptor, CCR2, play a critical role in regulating nociceptive processes during neuropathic pain. However, the role of CCL2 in peripheral leukocyte infiltration-associated neuropathic pain remains poorly understood. ⋯ Using a specific CCR2 antagonist and mice with a CCL2 genetic deletion, we have also established that the CCL2/CCR2 axis drives monocyte/macrophage infiltration and pain hypersensitivity in the CCI model. Finally, specific deletion of CCL2 in stromal or immune cells respectively using irradiated bone marrow-chimeric CCI mice demonstrated that stromal cell-derived CCL2 (in contrast to CCL2 immune cell-derived) tightly controls monocyte/macrophage recruitment into the lesion and plays a major role in the development of neuropathic pain. These findings demonstrate that in chronic pain states, CCL2 expressed by sciatic nerve cells predominantly drove local neuro-immune interactions and pain-related behavior through CCR2 signaling.
-
Brain Behav. Immun. · Mar 2015
Randomized Controlled Trial Observational StudyVariable neuroendocrine-immune dysfunction in individuals with unfavorable outcome after severe traumatic brain injury.
Bidirectional communication between the immune and neuroendocrine systems is not well understood in the context of traumatic brain injury (TBI). The purpose of this study was to characterize relationships between cerebrospinal fluid (CSF) cortisol and inflammation after TBI, and to determine how these relationships differ by outcome. CSF samples were collected from 91 subjects with severe TBI during days 0-6 post-injury, analyzed for cortisol and inflammatory markers, and compared to healthy controls (n=13 cortisol, n=11 inflammatory markers). ⋯ Our results suggest that unfavorable outcome after TBI may result from dysfunctional neuroendocrine-immune communication wherein an adequate immune response is not mounted or, alternatively, neuroinflammation is prolonged. Importantly, the nature of neuroendocrine-immune dysfunction differs between cortisol TRAJ groups. These results present a novel biomarker-based index from which to discriminate outcome and emphasize the need for evaluating tailored treatments targeting inflammation early after injury.
-
Brain Behav. Immun. · Mar 2015
Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome.
Traumatic brain injury (TBI) results in a significant inflammatory burden that perpetuates the production of inflammatory mediators and biomarkers. Interleukin-6 (IL-6) is a pro-inflammatory cytokine known to be elevated after trauma, and a major contributor to the inflammatory response following TBI. Previous studies have investigated associations between IL-6 and outcome following TBI, but to date, studies have been inconsistent in their conclusions. ⋯ Specifically, there was 70% concordance between those with TBI+polytrauma and the low TRAJ; in contrast, isolated TBI was similarly distributed between TRAJ groups. These data provide evidence that sustained, elevated levels of CSF IL-6 are associated with an increased inflammatory load, and these increases are associated with increased odds for unfavorable global outcomes in the first year following TBI. Future studies should explore additional factors contributing to IL-6 elevations, and therapies to mitigate its detrimental effects on outcome.
-
Brain Behav. Immun. · Mar 2015
ReviewRole of the immune system in HIV-associated neuroinflammation and neurocognitive implications.
Individuals living with HIV who are optimally treated with combination antiretroviral therapy (cART) can now lead an extended life. In spite of this remarkable survival benefit from viral suppression achieved by cART in peripheral blood, the rate of mild to moderate cognitive impairment remains high. A cognitive decline that includes impairments in attention, learning and executive function is accompanied by increased rates of mood disorders that together adversely impact the daily life of those with chronic HIV infection. ⋯ Cytokines, which are elevated in the blood of patients with HIV infection, may also contribute to brain inflammation by entering the brain from the blood. Host factors such as aging and co-morbid conditions such as cytomegalovirus co-infection and vascular pathology are important factors that affect the HIV-host immune interactions in HAND pathogenesis. By these diverse mechanisms, HIV-1 induces a neuroinflammatory response that is likely to be a major contributor to the cognitive and behavior changes seen in HIV infection.