Brain, behavior, and immunity
-
Brain Behav. Immun. · Feb 2018
Triggering receptor expressed on myeloid cells 2 (TREM2) dependent microglial activation promotes cisplatin-induced peripheral neuropathy in mice.
Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse side effect of many antineoplastic agents. Patients treated with chemotherapy often report pain and paresthesias in a "glove-and-stocking" distribution. Diverse mechanisms contribute to the development and maintenance of CIPN. ⋯ The data demonstrated that cisplatin triggered persistent activation of spinal cord microglia through strengthening TREM2/DAP12 signaling, which further resulted in CIPN. Functional blockage of TREM2 or inhibition of microglia both benefited for cisplatin-induced peripheral neuropathy. Microglial TREM2/DAP12 may serve as a potential target for CIPN intervention.
-
Brain Behav. Immun. · Feb 2018
Interaction between astrocytic colony stimulating factor and its receptor on microglia mediates central sensitization and behavioral hypersensitivity in chronic post ischemic pain model.
Accumulation of microglia occurs in the dorsal horn in the rodent model of chronic post ischemic pain (CPIP), while the mechanism how microglia affects the development of persistent pain largely remains unknown. Here, using a rodent model of CPIP induced by ischemia-reperfusion (IR) injury in the hindpaw, we observed that microglial accumulation occurred in the ipsilateral dorsal horn after ischemia 3h, and in ipsilateral and contralateral dorsal horn in the rats with ischemia 6h. ⋯ While exogenous M-CSF induced microglial activation and proliferation, BDNF production, neuronal hyperactivity in dorsal horn and behavioral hypersensitivity in the naïve rats, inhibition of astrocytic CSF1/microglial CSF1R signaling by fluorocitric or PLX3397 significantly suppressed microglial activation and proliferation, BDNF upregulation, and neuronal activity in dorsal horn, as well as the mechanical allodynia and thermal hyperalgesia, in the rats with ischemia 6h. Collectively, these results demonstrated that glial CSF1/CSF1R pathway mediated the microglial activation and proliferation, which facilitated the nociceptive output and contributed to the chronic pain induced by IR injury.