Brain, behavior, and immunity
-
Brain Behav. Immun. · Aug 2014
CX3CL1-mediated macrophage activation contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy.
Painful peripheral neuropathy is a dose-limiting side effect of paclitaxel therapy, which hampers the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms remain largely unknown. Here we showed that the clinically relevant dose of paclitaxel (3×8mg/kg, cumulative dose 24mg/kg) induced significant upregulation of the chemokine CX3CL1 in the A-fiber primary sensory neurons in vivo and in vitro and infiltration of macrophages into the dorsal root ganglion (DRG) in rats. ⋯ Furthermore, depletion of macrophage by systemic administration of clodronate inhibited paclitaxel-induced allodynia. Blocking CX3CL1 decreased activation of p38 MAPK in the macrophage, and inhibition of p38 MAPK activity blocked the neuronal apoptosis and development of mechanical allodynia induced by paclitaxel. These findings provide novel evidence that CX3CL1-recruited macrophage contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy.
-
Brain Behav. Immun. · Aug 2014
ReviewImmune system: a possible nexus between cannabinoids and psychosis.
Endocannabinoid system is involved in the regulation of the brain-immune axis. Cannabis consumption is related with the development, course, and severity of psychosis. The epidemiological evidence for increased occurrence of immunological alterations in patients with psychosis has not been sufficiently addressed. The aim of this review is to establish whether there is any scientific evidence of the influence of cannabinoids on aspects of immunity that affect susceptibility to psychotic disorder induction. ⋯ The actions of cannabinoids through the immune system are quite regular and predictable in the peripheral but remain fuzzy in the central nervous system. Despite this uncertainty, it may be hypothesized that exposure to exocannabinoids, in particular during adolescence might prompt immunological dysfunctions that potentially cause a latent vulnerability to psychosis. Further investigations are warranted to clarify the relationship between the immunological effects of cannabis and psychosis.
-
Brain Behav. Immun. · Aug 2014
Reduced sleep, stress responsivity, and female sex contribute to persistent inflammation-induced mechanical hypersensitivity in rats.
Studies in humans suggest that female sex, reduced sleep opportunities and biological stress responsivity increase risk for developing persistent pain conditions. To investigate the relative contribution of these three factors to persistent pain, we employed the Sciatic Inflammatory Neuritis (SIN) model of repeated left sciatic perineurial exposures to zymosan, an inflammatory stimulus, to determine their impact upon the development of persistent mechanical hypersensitivity. Following an initial moderate insult, a very low zymosan dose was infused daily for eight days to model a sub-threshold inflammatory perturbation to which only susceptible animals would manifest or maintain mechanical hypersensitivity. ⋯ Hypothalamic-pituitary-adrenal (HPA) axis hyporesponsive Lewis rats exhibited the most robust development of mechanical hypersensitivity and HPA axis hyperresponsive Fischer 344 rats matched the Lewis rats' mechanical hypersensitivity throughout the latter four days of the protocol. If HPA axis phenotype does indeed influence these findings, the more balanced responsivity of Sprague Dawley rats would seem to promote resilience in this paradigm. Taken together, these findings are consistent with what is known regarding persistent pain development in humans.
-
Brain Behav. Immun. · Aug 2014
Neuroinflammation in bipolar disorder - A [(11)C]-(R)-PK11195 positron emission tomography study.
The "monocyte-T-cell theory of mood disorders" regards neuroinflammation, i.e. marked activation of microglia, as a driving force in bipolar disorder. Microglia activation can be visualized in vivo using [(11)C]-(R)-PK11195 PET. Indirect evidence suggests the hippocampus as a potential focus of neuroinflammation in bipolar disorder. We aim to determine if there is increased [(11)C]-(R)-PK11195 binding to activated microglia in the hippocampus of patients with bipolar I disorder when compared to healthy controls. ⋯ This study is the first to demonstrate the presence of focal neuroinflammation in the right hippocampus in bipolar I disorder.
-
Brain Behav. Immun. · Aug 2014
Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats.
In addition to metabolic and cardiovascular disorders, obesity pandemic is associated with chronic low-grade inflammation as well as adverse cognitive outcomes. However, the existence of critical periods of development that differ in terms of sensitivity to the effects of diet-induced obesity remains unexplored. Using short exposure to a high-fat diet (HFD) exerting no effects when given to adult mice, we recently found impairment of hippocampal-dependent memory and plasticity after similar HFD exposure encompassing adolescence (from weaning to adulthood) showing the vulnerability of the juvenile period (Boitard et al., 2012). ⋯ Interestingly, whereas the same duration of HFD intake at adulthood induced similar weight gain and metabolic alterations as jHFD intake, it did neither affect spatial performance (long-term memory or reversal learning) nor lipopolysaccharide-induced cytokine expression in the hippocampus. Finally, spatial reversal learning enhanced Interleukin-1-beta in the hippocampus, but not in the frontal cortex and the hypothalamus, of jHFD-fed rats. These results indicate that juvenile HFD intake promotes exaggerated pro-inflammatory cytokines expression in the hippocampus which is likely to contribute to spatial memory impairment.