Annals of biomedical engineering
-
Orthopaedic surgeons are often faced with difficult bone loss problems. Conventional bone grafting is usually accomplished with autogenous iliac crest bone graft that provides osteogenic cells, osteoinductive growth factors, and an osteoconductive matrix. Cadaveric bone allograft and bone graft substitutes are inferior to autogenous bone graft because they fail to supply osteogenic cells or a significant amount of osteoinductive growth factors. ⋯ In the presence of appropriate growth factors these cells can differentiate into osteoblast lineage cells that will form bone in vitro and in vivo. Recent attention has focused on genetic modification of mesenchymal stem cells to both produce and respond to osteogenic growth factors with the goal of developing a tissue engineering strategy for bone repair. This review examines the current potential and limitations of these cellular systems for bone repair.
-
Comparative Study
Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery.
The objectives of this study were (1) to quantify changes in the mechanical behavior of the intervertebral disc in response to cyclic compressive loading and (2) to determine whether mechanical behavior would be restored following a period of unloading. The elastic and viscoelastic compressive mechanical behaviors of adult sheep motion segments were assessed. Ten thousand cycles of compressive loading resulted in increased elastic stiffness and decreased stress-relaxation. ⋯ Cyclic loading caused a decrease in total relaxation (from 92 to 38 N, p < 0.001) that also returned to initial levels after recovery. The reversible, repeatable effects of cyclic loading and recovery demonstrated in this in vitro study may be attributed to fluid flow. Intervertebral disc fluid transport during the diurnal recovery cycle may be key to understanding intervertebral disc degeneration, as fluid exudation and recovery may be integral to maintaining adequate disc nutrition.