Annals of biomedical engineering
-
We propose a new algorithm for real-time estimation of instantaneous heart rate (HR) from noise-laden electrocardiogram (ECG) waveforms typical of unstructured, ambulatory field environments. The estimation of HR from ECG waveforms is an indirect measurement problem that requires differencing, which invariably amplifies high-frequency noise. We circumvented noise amplification by considering the estimation of HR as the solution of a weighted regularized least squares problem, which, in addition, directly provided analytically based confidence intervals (CIs) for the estimated HRs. ⋯ The simulation results indicated that our algorithm consistently produced more accurate HR estimates, with estimation errors as much as 67% smaller than those attained by the postprocessing methods, while the results with the field-collected data showed that the proposed algorithm produced much smoother and reliable HR estimates than those obtained by the vital-sign monitor. Moreover, the obtained CIs reflected the amount of noise in the ECG recording and could be used to statistically quantify uncertainties in the HR estimates. We conclude that the proposed method is robust to different types of noise and is particularly suitable for use in ambulatory environments where data quality is notoriously poor.