Annals of biomedical engineering
-
A majority of traumatic brain injuries (TBI) in motor vehicle crashes and sporting environments are mild and caused by high-rate acceleration of the head. For injuries caused by rotational acceleration, both magnitude and duration of the acceleration pulse were shown to influence injury outcomes. This study incorporated a unique rodent model of rotational acceleration-induced mild TBI (mTBI) to quantify independent effects of magnitude and duration on behavioral and neuroimaging outcomes. ⋯ DTI demonstrated significant effects of both magnitude and duration, with the FA of the amygdala related to both the magnitude and duration. Increased duration also caused FA changes at the interface of gray and white matter. Collectively, the findings demonstrate that the consequences of rotational acceleration mTBI were more closely associated with duration of the rotational acceleration impulse, which is often neglected as an independent factor, and highlight the need for animal models of TBI with strong biomechanical foundations to associate behavioral outcomes with brain microstructure.