Annals of biomedical engineering
-
Accurate assessment of aortic extensibility is a requisite first step for elucidating the pathophysiology of an ascending thoracic aortic aneurysm (ATAA). This study aimed to develop a framework for the in vivo evaluation of the full-field distribution of the aortic wall strain by imaging analysis of electrocardiographic- (ECG) gated thoracic data of 34 patients with ATAA. Seven healthy controls (i.e., non-aneurysmal aorta) from patients who underwent ECG-gated CT angiography for coronary artery diseases were included for comparison. ⋯ Moreover, the patient risk as quantified by the ratio of in vivo strain to the ruptured one increased significantly with increased systolic blood pressure, older age, and higher pressure-strain modulus. Statistical analysis also indicated that an increased pressure-strain modulus is a risk factor for ATAAs with bicuspid aortic valve, suggesting a different mechanism of failure in these patients. The approach here proposed for the in vivo evaluation of the aortic wall strain is simple and fast, with promising applicability in routine clinical imaging, and could be used to develop a rupture potential criterion on the basis of the aortic aneurysm extensibility.