Annals of biomedical engineering
-
Tibial external fixation frames were constructed on aluminum tube simulating tibia bone. A 20-mm gap was left at the fracture site in order to measure the structural stiffness of the frame rather than the aluminum tube. The performance of the frames were experimentally evaluated and quantified using tests which simulated the loading conditions encountered in normal walking. ⋯ Stiffnesses of various frames with different geometric configurations were compared by comparing their appropriate stiffness coefficients. Such comparison can set forth a quantitative guideline in selecting a suitable frame configuration for the type of injury and condition of fracture pattern. This type of quantitative analysis can also be useful in modifying the frame during the postoperative bone healing process.
-
Comparative Study
Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes.
Arrays of platinum (faradaic) and anodized, sintered tantalum pentoxide (capacitor) electrodes were implanted bilaterally in the subdural space of the parietal cortex of the cat. Two weeks after implantation both types of electrodes were pulsed for seven hours with identical waveforms consisting of controlled-current, charge-balanced, symmetric, anodic-first pulse pairs, 400 microseconds/phase and a charge density of 80-100 microC/cm2 (microcoulombs per square cm) at 50 pps (pulses per second). One group of animals was sacrificed immediately following stimulation and a second smaller group one week after stimulation. ⋯ Glial cells appeared essentially normal. In animals killed one week after stimulation most of the damaged neurons had recovered, but the presence of shrunken, vacuolated and degenerating neurons showed that some of the cells were damaged irreversibly. It is concluded that most of the neural damage from stimulations of the brain surface at the level used in this study derives from processes associated with passage of the stimulus current through tissue, such as neuronal hyperactivity rather than electrochemical reactions associated with current injection across the electrode-tissue interface, since such reactions occur only with the faradaic electrodes.
-
Comparative Study
Intrathoracic pressure fluctuations move blood during CPR: comparison of hemodynamic data with predictions from a mathematical model.
Whether blood flow during cardiopulmonary resuscitation (CPR) results from intrathoracic pressure fluctuations or direct cardiac compression remains controversial. We developed a mathematical model that predicts that blood flow due to intrathoracic pressure fluctuations should be insensitive to compression rate over a wide range but dependent on the applied force and compression duration. If direct compression of the heart plays a major role, however, the model predicts that flow should be dependent on compression rate and force, but above a threshold, insensitive to compression duration. ⋯ At nearly constant peak sternal force (378-426 N), flow was significantly increased when the duration of compression was increased from short (13%-19% of the cycle) to long (40%-47%), at a rate of 60/min. Flow was unchanged, however, for an increase in rate from 60 to 150/min at constant compression duration. In addition, myocardial and cerebral flow correlated with their respective perfusion pressures.(ABSTRACT TRUNCATED AT 400 WORDS)
-
Left ventricular (LV) diastolic filling is limited by the constraining effects exerted by the pericardium (PE) and the lung/chest wall. The aim of the present study was to assess the validity of various estimates of external cardiac constraint, compared to pericardial surface pressure (Ppe) measured lateral to the LV myocardium. In nine anesthetized dogs we measured Ppe, pleural surface pressure (Ppt) (lateral to the pericardium) and esophageal pressure (Pes) under conditions of volume loading and positive end-expiratory pressure (PEEP). ⋯ Therefore, calculation of transmural LV pressure by subtracting pleural or esophageal pressure from intracavitary pressure can lead to overestimation of LV preload. The decrease in cardiac output during PEEP occurs secondary to decreased preload, i.e. decreased transmural pressure and end-diastolic dimension. Analysis of performance using cardiac function curves does not suggest a change in contractility with PEEP.
-
Since virtually all the oxygen carried by blood at normal hematocrit is reversibly bound to red blood cell hemoglobin, the distribution of oxygen within the microcirculation can be determined from measurements of hemoglobin concentration and hemoglobin oxygen saturation in vessels of the network. Photometric methods that rely on light absorption and scattering properties of blood are described. Criteria for selecting the wavelengths needed to analyze hemoglobin in the microcirculation are specified. ⋯ Technical aspects of microscope photometry including light sources, microscopy, and detection systems are described with special emphasis on the problem of glare. The importance of in vitro as well as in vivo calibrations is stressed, and several recent applications of a working system are discussed. Current problems as well as future developments of this methodology are delineated as a guide to future work in this area.