Annals of biomedical engineering
-
Accurate assessment of aortic extensibility is a requisite first step for elucidating the pathophysiology of an ascending thoracic aortic aneurysm (ATAA). This study aimed to develop a framework for the in vivo evaluation of the full-field distribution of the aortic wall strain by imaging analysis of electrocardiographic- (ECG) gated thoracic data of 34 patients with ATAA. Seven healthy controls (i.e., non-aneurysmal aorta) from patients who underwent ECG-gated CT angiography for coronary artery diseases were included for comparison. ⋯ Moreover, the patient risk as quantified by the ratio of in vivo strain to the ruptured one increased significantly with increased systolic blood pressure, older age, and higher pressure-strain modulus. Statistical analysis also indicated that an increased pressure-strain modulus is a risk factor for ATAAs with bicuspid aortic valve, suggesting a different mechanism of failure in these patients. The approach here proposed for the in vivo evaluation of the aortic wall strain is simple and fast, with promising applicability in routine clinical imaging, and could be used to develop a rupture potential criterion on the basis of the aortic aneurysm extensibility.
-
A pre-computed brain response atlas (pcBRA) may have the potential to accelerate the investigation of the biomechanical mechanisms of traumatic brain injury on a large-scale. In this study, we further enhance the technique and evaluate its performance using six degree-of-freedom angular velocity profiles from dummy head impacts. Using the pcBRA to simplify profiles into acceleration-only shapes, sufficiently accurate strain estimates were obtained for impacts with a major dominating velocity peak. ⋯ For these impacts, estimation accuracy was substantially improved with a biphasic profile simplification (average correlation coefficient and linear regression slope of 0.92 ± 0.03 and 0.95 ± 0.07 for biphasic shapes, respectively, vs. 0.80 ± 0.06 and 0.80 ± 0.08 for acceleration-only shapes). Peak maximum principal strain (ɛ p) and cumulative strain damage measure (CSDM) from the estimated strains consistently correlated stronger than kinematic metrics with respect to the baseline ɛ p and CSDM from the directly simulated responses, regardless of the brain region, and by a large margin (e.g., correlation of 0.93 vs. 0.75 compared to Brain Injury Criterion (BrIC) for ɛ p in the whole-brain, and 0.91 vs. 0.47 compared to BrIC for CSDM in the corpus callosum). These findings further support the pre-computation technique for accurate, real-time strain estimation, which could be important to accelerate model-based brain injury studies in the future.
-
Helmeted impact devices have allowed researchers to investigate the biomechanics of head impacts in vivo. While increased impact magnitude has been associated with greater concussion risk, a definitive concussive threshold has not been established. It is likely that concussion risk is not determined by a single impact itself, but a host of predisposing factors. ⋯ Cumulative magnitude is a simplistic measure of the total exposure sustained by a player over a given period. However, this measure is limited as it assumes the brain is a static structure unable to undergo self-repair. Future research should consider how biological recovery between impacts may influence concussion risk.
-
Electromyography (EMG)-based measures of the trunk muscles behavior have been used for objective assessment of biomechanical impairments in patients with low back pain (LBP); yet the literature on normal age-related differences in such measures is scant. A cross-sectional study was designed to assess age-related differences in activity of trunk extensors during forward bending and backward return. Sixty asymptomatic individuals were recruited to form five gender-balanced age groups between 20 and 70 years old. ⋯ However, the peak normalized EMG activity during forward bending and backward return as well as the mean normalized EMG activity during the entire task were found to be larger in older vs. younger individuals. Given the suggested unreliability of normalized EMG in elders and considering that we did not find any age-related differences in non-normalized EMG activity of erector spinae, our results do not strongly support the existence of normal age-related differences in EMG profile of erector spinae during forward bending and backward return. Therefore, when interpreting EMG-based measures of trunk muscles behavior for identification of biomechanical impairment in patients with LBP, potential abnormalities in EMG activity of trunk muscles may not be attributed to patient's age.
-
The goal of this study was to develop stable intraspinal microstimulation (ISMS) implants for use in humans to restore standing and walking after spinal cord injury. ISMS electrically activates locomotor networks within the lumbar region of the spinal cord. In animals, ISMS produced better functional outcomes than those obtained by other interventions, and recent efforts have focused on translating this approach to humans. ⋯ Based on these results, six different coil types were fabricated and their strain relief capacity assessed. When interposed between the electrodes and the stimulator, five coil types successfully prevented the dislodgement of the electrodes. The results of this study will guide the design of mechanically stable ISMS implants for ultimate human use.