The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology
-
Asthma is characterised by heterogeneous clinical phenotypes. Our objective was to determine molecular phenotypes of asthma by analysing sputum cell transcriptomics from 104 moderate-to-severe asthmatic subjects and 16 nonasthmatic subjects. After filtering on the differentially expressed genes between eosinophil- and noneosinophil-associated sputum inflammation, we used unbiased hierarchical clustering on 508 differentially expressed genes and gene set variation analysis of specific gene sets. ⋯ TAC3 had normal to moderately high sputum eosinophils and better preserved forced expiratory volume in 1 s. Gene-protein coexpression networks from TAC1 and TAC2 extended this molecular classification. We defined one Th2-high eosinophilic phenotype TAC1, and two non-Th2 phenotypes TAC2 and TAC3, characterised by inflammasome-associated and metabolic/mitochondrial pathways, respectively.
-
Interstitial lung fibroblast activation coupled with extracellular matrix production is a pathological signature of idiopathic pulmonary fibrosis (IPF), and is governed by transforming growth factor (TGF)-β/Smad signalling. We sought to define the role of heat shock protein (HSP)90 in profibrotic responses in IPF and to determine the therapeutic effects of HSP90 inhibition in a murine model of pulmonary fibrosis. We investigated the effects of HSP90 inhibition in vitro by applying 17-AAG (17-allylamino-17-demethoxygeldanamycin) to lung fibroblasts and A549 cells and in vivo by administering 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin) to mice with bleomycin-induced pulmonary fibrosis. ⋯ Co-immunoprecipitation revealed that HSP90β interacted with TGF-β receptor II and stabilised TGF-β receptors. Furthermore, 17-DMAG improved lung function and decreased fibrosis and matrix metalloproteinase activity in the lungs of bleomycin-challenged mice. In conclusion, this is the first study to demonstrate that HSP90 inhibition blocks pulmonary fibroblast activation and ameliorates bleomycin-induced pulmonary fibrosis in mice.