The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology
-
Trikafta, currently the leading therapeutic in Cystic Fibrosis (CF), has demonstrated a real clinical benefit. This treatment is the triple combination therapy of two folding correctors elexacaftor/tezacaftor (VX445/VX661) plus the gating potentiator ivacaftor (VX770). In this study, our aim was to compare the properties of F508del-CFTR in cells treated with either lumacaftor (VX809), tezacaftor, elexacaftor, elexacaftor/tezacaftor with or without ivacaftor. ⋯ When cells were treated with ivacaftor combined to any correctors, the F508del-CFTR current was unresponsive to the subsequently acute addition of ivacaftor unlike the CFTR potentiators genistein and Cact-A1 which increased elexacaftor/tezacaftor/ivacaftor and elexacaftor/tezacaftor-corrected F508del-CFTR currents. These findings show that ivacaftor reduces the correction efficacy of Trikafta. Thus, combining elexacaftor/tezacaftor with a different potentiator might improve the therapeutic efficacy for treating CF patients.
-
The lung clearance index (LCI) measured by the multiple breath washout (MBW) test is sensitive to early lung disease in children with cystic fibrosis. While LCI worsens during the preschool years in cystic fibrosis, there is limited evidence to clarify whether this continues during the early school age years, and whether the trajectory of disease progression as measured by LCI is modifiable. A cohort of children (healthy and cystic fibrosis) previously studied for 12 months as preschoolers were followed during school age (5-10 years). ⋯ During school age years, the course of disease was stable (-0.02 units·year-1 (95% CI -0.14-0.10). LCI measured during preschool years, as well as the rate of LCI change during this time period, were important determinants of LCI and FEV1, at school age. Preschool LCI was a major determinant of school age LCI; these findings further support that the preschool years are critical for early intervention strategies.
-
Alveolar epithelial-capillary barrier disruption is a hallmark of acute respiratory distress syndrome (ARDS). Contribution of mitochondrial dysfunction to the compromised alveolar-capillary barrier in ARDS remains unclear. Mesenchymal stromal cells-derived extracellular vesicles (MSC-EVs) are considered as a cell-free therapy for ARDS. ⋯ Extracellular vesicles derived from normal MSCs restored barrier integrity and normal levels of oxidative phosphorylation while an extracellular vesicles preparation which did not contain mitochondria was not effective. In vivo, presence of mitochondria was critical for extracellular vesicles ability to reduce lung injury and restore mitochondrial respiration in the lung tissue. In the ARDS environment, MSC-EVs improve alveolar-capillary barrier properties through restoration of mitochondrial functions at least partially via mitochondrial transfer.