FASEB journal : official publication of the Federation of American Societies for Experimental Biology
-
Although metallothionein (MT) can be induced by inflammatory mediators, its roles in coagulatory disturbance during inflammation are poorly defined. We determined whether MT protects against coagulatory and fibrinolytic disturbance and systemic inflammation induced by intraperitoneal administration of lipopolysaccharide (LPS) in MT-I/II null (-/-) and wild-type (WT) mice. As compared with WT mice, MT (-/-) mice revealed significant prolongation of prothrombin and activated partial thromboplastin time, a significant increase in the levels of fibrinogen and fibrinogen/fibrin degradation products, and a significant decrease in activated protein C, after LPS treatment. ⋯ In both genotypes of mice, LPS enhanced protein expression of interleukin (IL)-1beta, IL-6, granulocyte/macrophage-colony-stimulating factor, macrophage inflammatory protein (MIP)-1alpha, MIP-2, macrophage chemoattractant protein-1, and keratinocyte chemoattractant in the lung, kidney, and liver and circulatory levels of IL-1beta, IL-6, MIP-2, and KC. In overall trends, however, the levels of these proinflammatory proteins were greater in MT (-/-) mice than in WT mice after LPS challenge. Our results suggest that MT protects against coagulatory and fibrinolytic disturbance and multiple organ damages induced by LPS, at least partly, via the inhibition of the expression of proinflammatory proteins.