FASEB journal : official publication of the Federation of American Societies for Experimental Biology
-
Chronic obstructive pulmonary disease (COPD) is characterized by persistent inflammation and tissue remodeling and is a leading cause of death in the United States. Increased apoptosis of pulmonary epithelial cells is thought to play a role in COPD development and progression. Identification of signaling pathways resulting in increased apoptosis in COPD can be used in the development of novel therapeutic interventions. ⋯ Deoxycitidine kinase (DCK), a major enzyme for dAdo phosphorylation, was up-regulated in mouse and human airway epithelial cells in association with air-space enlargement. Hypoxia was identified as a novel regulator of DCK, and inhibition of DCK resulted in diminished dAdo-mediated apoptosis in the lungs. Our results suggest that activating the dAdo-DCK-dATP pathway directly results in increased apoptosis in the lungs of mice with air-space enlargement and suggests a novel therapeutic target for the treatment of COPD.
-
Mammalian target of rapamycin (mTOR) is a major regulator of cellular metabolism, proliferation, and survival that is implicated in various proliferative and metabolic diseases, including obesity, type 2 diabetes, hamartoma syndromes, and cancer. Emerging evidence suggests a potential critical role of mTOR signaling in pulmonary vascular remodeling. ⋯ This review aims to summarize our current knowledge and recent advances in understanding the role of the mTOR pathway in pulmonary vascular remodeling, with a specific focus on the hypoxia component, a confirmed shared trigger of pulmonary hypertension in lung diseases. We also discuss the emerging role of mTOR as a promising therapeutic target and mTOR inhibitors as potential pharmacological approaches to treat pulmonary vascular remodeling in pulmonary hypertension.