FASEB journal : official publication of the Federation of American Societies for Experimental Biology
-
Remyelination has to occur to fully regenerate injured spinal cords or brain tissues. A growing body of evidence has suggested that exogenous cell transplantation is one promising strategy to promote remyelination. However, direct injection of neural stem cells or oligodendrocyte progenitor cells (OPCs) to the lesion site may not be an optimal therapeutic strategy due to poor viability and functionality of transplanted cells resulted from the local hostile tissue environment. ⋯ These hydrogels were optimized first regarding cell adhesive properties and mechanical properties to best support the growth properties of OPCs in culture. Transplanted OPCs with the hydrogels optimized in vitro exhibited enhanced survival and oligodendrogenic differentiation and were able to remyelinate demyelinated axons inside ethidium bromide (EB) demyelination lesion in adult spinal cord. This study provides a new possible therapeutic approach to treat CNS injuries in which cell therapies may be essential.
-
Lymphedema is a dreaded complication of cancer treatment. However, despite the fact that >5 million Americans are affected by this disorder, the development of effective treatments is limited by the fact that the pathology of lymphedema remains unknown. The purpose of these studies was to determine the role of inflammatory responses in lymphedema pathology. ⋯ Further, we show that inhibition of Th2 differentiation using interleukin-4 (IL-4) or IL-13 blockade prevents initiation and progression of lymphedema by decreasing tissue fibrosis and significantly improving lymphatic function, independent of lymphangiogenic growth factors. We show that CD4 inflammation is a critical regulator of tissue fibrosis and lymphatic dysfunction in lymphedema and that inhibition of Th2 differentiation markedly improves lymphatic function independent of lymphangiogenic cytokine expression. Notably, preventing and/or reversing the development of pathological tissue changes that occur in lymphedema may be a viable treatment strategy for this disorder.
-
Nonspecific sarcolemmal cation channels are critical for the pathogenesis of malignant hyperthermia.
Malignant hyperthermia (MH) susceptibility has been attributed to a leaky sarcoplasmic reticulum (SR) caused by missense mutations in RYR1 or CACNA1S, and the MH crisis has been attributed solely to massive self-sustaining release of Ca(2+) from SR stores elicited by triggering agents. Here, we show in muscle cells from MH-RyR1(R163C) knock-in mice that increased passive SR Ca(2+) leak causes an enlarged basal influx of sarcolemmal Ca(2+) that results in chronically elevated myoplasmic free Ca(2+) concentration ([Ca(2+)]i) at rest. We discovered that Gd(+3) and GsMTx-4 were more effective than BTP2 or expression of the dominant-negative Orai1(E190Q) in reducing both Ca(2+) entry and [Ca(2+)]i, implicating a non-STIM1/Orai1 SOCE pathway in resetting resting [Ca(2+)]i. ⋯ D., Lopez, J. R. Nonspecific sarcolemmal cation channels are critical for the pathogenesis of malignant hyperthermia.
-
Pain inhibition by blocking leukocytic and neuronal opioid peptidases in peripheral inflamed tissue.
Inflammatory pain can be controlled by endogenous opioid peptides. Here we blocked the degradation of opioids in peripheral injured tissue to locally augment this physiological system. In rats with hindpaw inflammation, inhibitors of aminopeptidase N (APN; bestatin) or neutral endopeptidase (NEP; thiorphan), and a dual inhibitor, NH(2)-CH-Ph-P(O)(OH)CH(2)-CH-CH(2)Ph(p-Ph)-CONH-CH-CH(3)-COOH (P8B), were applied to injured paws. ⋯ Radioimmunoassays showed that inhibition of leukocytic APN and NEP by bestatin (5-500 μM)/thiorphan (1-100 μM) combinations or by P8B (1-100 μM) prevented the degradation of enkephalins. Blockade of neuronal peptidases by bestatin (0.5-10 mM)/thiorphan (0.1-5 mM) or by P8B (0.1-10 mM) additionally hindered dynorphin A 1-17 catabolism. Thus, leukocytes and peripheral nerves are important sources of APN and NEP in inflamed tissue, and their blockade promotes peripheral opioid analgesia.
-
Unregulated inflammation underlies many diseases, including sepsis. Much interest lies in targeting anti-inflammatory mechanisms to develop new treatments. One such target is the anti-inflammatory protein annexin A1 (AnxA1) and its receptor, FPR2/ALX. ⋯ AnxA1(Ac2-26) effects were attenuated by Boc2 (pan-FPR antagonist, 10 μg/mouse, ∼12 nmol), and by minocycline (2.25 mg/mouse, ∼6.3 nmol). The nonselective Fpr agonists, fMLP (6 μg/mouse, ∼17 nmol) and AnxA1(Ac2-26), and the Fpr2-selective agonist ATLa (5 μg/mouse, ∼11 nmol) were without effect in Fpr2/3(-/-) mice. In summary, our novel results demonstrate that the AnxA1/FPR2 system has an important role in effecting the resolution of cerebral inflammation in sepsis and may, therefore, provide a novel therapeutic target.