Neurophysiologie clinique = Clinical neurophysiology
-
The objective of the present study was to determine whether an olfactory prime could modulate behavior and visual event-related potentials (ERPs) obtained in response to a visual stimulation representing female faces. More specifically, we tested the hypothesis that a pleasant odor could have effects on face perception: behavioral effects on subjective emotional estimation of faces, and on associated response times, and electrophysiological effects on the N400 and late positive complex or LPC. Experiments were performed in which subjects had to decide whether the presented face was pleasant or not, while visual ERPs were recorded. ⋯ However, no behavioral effects of the pleasant odor on response time or on evaluation of face pleasantness were observed. Late ERPs evoked by faces were modulated by the presence of a pleasant odor, even when subjects were neither warned nor aware of the presence of the odor: in a frontal site and after the diffusion of the odor, the LPC (appearing 550 ms after the presentation of the visual stimulus) evoked by unpleasant faces was significantly more positive than the LPC evoked by pleasant faces. This effect could reflect an enhanced alert reaction to unpleasant faces are preceded by an (incongrous) pleasant odor.
-
Electrical stimulation of the motor cortex (MCS) is a promising and increasingly used neurosurgical technique for the control of refractory neuropathic pain. Although its mechanisms of action remain unknown, recent functional imaging data suggest involvement of the thalamus, brainstem and anterior cingulate/orbitofrontal cortex. Since some of these areas are also implicated in higher cognitive functions, notably attentional processes, we analysed cognitive ERPs and behavioural performance during an "oddball" auditory detection task in patients submitted to this procedure. ⋯ At the individual level, the effect of MCS on the endogenous ERPs was highly variable, ranging from a total stability of ERPs (mostly in younger subjects) to latency differences of tens of milliseconds in the older group. These results, together with recent experiments showing P300 alteration during repetitive transcranial stimulation, suggest that motor cortex stimulation may interfere with relatively simple cognitive processes such as those underlying target detection, and that the risk of abnormal cognitive effects related to cortical stimulation may increase with age. Although the procedure appears on the whole remarkably safe, complementary neuropsychological studies in this category of patients are advised, as well as caution to possible adverse cognitive effects when using MCS in the elderly, notably in the presence of pre-existent cerebral lesions.
-
The clinical interest of a new type of laser evoked potentials (LEPs) using Nd:YAG laser was assessed in the diagnosis of peripheral neuropathies affecting the small-diameter nerve fibres, and of spinal cord lesions, affecting the spinothalamic tract. Twelve patients aged from 26 to 79 years with sensory neuropathies (n = 6) or spinal cord lesions (n = 6) underwent neurophysiological examination of the lower limbs comprising quantitative sensory testing, i.e., the determination of vibratory and thermal thresholds (VT and TT), somatosensory evoked potentials (SEPs) to electrical stimulation and Nd:YAG LEPs. VT and SEPs were used to assess large-diameter afferent nerve fibres and the lemniscal pathways while TT and LEPs were used to assess small-diameter afferent nerve fibres and the spinothalamic tract. ⋯ LEPs were absent bilaterally in all patients with polyneuropathy, even when TT remained within the normal limits and SSRs were present. LEPs were absent after stimulation of the affected limb in all patients with a spinal cord lesion, and allowed to detect subclinical contralateral lesion in two cases. LEPs following Nd:YAG laser stimulation are sensitive in the diagnosis of peripheral and/or central nervous system disorders and they give complementary information as compared to routine electrophysiological tests.
-
Sleep recordings and evoked potentials (EPs) were used in five comatose children to evaluate their predictive value for outcome following a severe comatose state. ⋯ In the three anoxic comas we observed BER abnormalities and the absence of SEP N20 associated with wide cortical lesions with brainstem extension. Sleep recordings showed major alterations of the wake-sleep cycle without any improvement in M6. Abnormalities included loss of the normal REM-sleep pattern associated with alteration of NREM sleep and periods of increase in motor activity without EEG arousal. This sleep pattern appeared to be associated with involvement of the brainstem. In the two traumatic comas, alterations of the early cortical SEP responses were less severe and the BERs were normal. Some sleep spindles were observed as well as the persistence of sleep cycles in the first weeks post-coma. The combined use of EEG, EPs and polysomnography improved the outcome prediction in comparison with the use of just one modality. EPs and sleep recordings were far superior to clinical evaluation and to GCS in the appreciation of the functional status of comatose children. The reappearance of sleep patterns is considered to be of favorable prognosis for outcome of the coma state, as is the presence of sleep spindles in post-trauma coma. This study showed that EPs and sleep recordings help to further distinguish between patients with good or bad outcomes.
-
The chronic electrical stimulation of a motor cortical area corresponding to a painful region of the body, by means of surgically-implanted epidural electrodes is a validated therapeutical strategy to control medication-resistant neurogenic pain. Repetitive transcranial magnetic stimulation (rTMS) permits to stimulate non-invasively and precisely the motor cortex. ⋯ A significant pain decrease was observed up to 8 days after the 'real' rTMS session. This study shows that a transient pain relief can be induced in patients suffering from chronic neurogenic pain during about the week that follows a 20-min session of 10 Hz-rTMS applied over the motor cortex.