Journal of photochemistry and photobiology. B, Biology
-
J. Photochem. Photobiol. B, Biol. · Apr 2020
Enhancement radiation-induced apoptosis in C6 glioma tumor-bearing rats via pH-responsive magnetic graphene oxide nanocarrier.
5-iodo-2-deoxyuridine (IUdR) has been demonstrated to induce an appreciable radiosensitizing effect on glioblastoma patients, but due to the short circulation half-life times and failure to pass through the blood-brain barrier (BBB), its clinical use is limited. Accordingly, in this study, we used magnetic graphene oxide (NGO/SPIONs) nanoparticles coated with PLGA polymer as a dynamic nanocarrier for IUdR and, evaluated its sensitizing enhancement ratio in combination with a single dose X-ray at clinically megavoltage energies for treatment of C6 glioma rats. Nanoparticles were characterized using Zetasizer and TEM microscopy, and in vitro biocompatibility of nanoparticles was assessed with MTT assay. ⋯ In vivo release analysis with HPLC indicated sustained release of IUdR and, prolonged the lifespan in plasma (P < .01). In addition, our findings revealed a synergistic effect for IUdR/MNPs coupled with radiation, which significantly inhibited the tumor expansion (>100%), prolonged the survival time (>100%) and suppressed the anti-apoptotic response of glioma rats by increasing Bax/Bcl-2 ratio (2.13-fold) in compared with the radiation-only. In conclusion, besides high accumulation in targeted tumor sites, the newly developed IUdR/MNPs, also exhibited the ability of IUdR/MNPs to significantly enhance radiosensitizing effect, improve therapeutic efficacy and increase toxicity for glioma-bearing rats.