Glia
-
Expression of inducible nitric oxide synthase (iNOS), which leads to the production of nitric oxide (NO), is stimulated by proinflammatory cytokines such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). Here we report on the roles of nuclear factor-kappaB (NF-kappaB) and mitogen-activated protein (MAP) kinases in IL-1beta/TNF-alpha-induced iNOS expression in adult rat astroglia. Cytokine-induced increases in nitrite accumulation (an index of NO production) and iNOS expression were attenuated by inhibition of NF-kappaB with pyrrolidine dithiocarbamate (PDTC). ⋯ IkappaB-alpha expression was not restored to control levels by inhibition of MEK. Furthermore, inhibition of MEK with PD098,059 did not alter IL-1beta- and TNF-alpha-induced expression of active NF-kappaB. The results demonstrate that autonomous Erk and NF-kappaB pathways mediate cytokine-induced increases in iNOS expression in astroglia.
-
Sphingosine 1-phosphate (S1P) is a platelet-derived bioactive sphingolipid that evokes a variety of biological responses. To understand the role of S1P in the central nervous system, we have examined the effect of S1P on the production of glial cell line-derived neurotrophic factor (GDNF) and growth regulation of cortical astrocytes from rat embryo. Moreover, we examined the possibility that the expression of GDNF is regulated differently in cultured astrocytes from the stroke-prone spontaneously hypertensive rat (SHRSP) than in those from Wistar kyoto rats (WKY). ⋯ Also, our results indicate that production in SHRSP astrocytes was attenuated in response to S1P compared with that observed in WKY. We conclude that S1P specifically triggers a cascade of events that regulate the production of GDNF and cell growth in astrocytes. Our results also suggest that the reduced expression of GDNF caused by S1P is a factor in the stroke proneness of SHRSP.
-
Schwann cell adhesion to basal lamina is essential for peripheral nerve development. beta(1) integrin receptors for extracellular matrix cooperate with other receptors to transmit signals that coordinate cell cycle progression and initiation of differentiation, including myelin-specific gene expression. In Schwann cell/sensory neuron cocultures, beta(1) integrins complex with focal adhesion kinase (FAK), fyn kinase, paxillin, and schwannomin in response to basal lamina adhesion. To study the assembly of this signaling complex in Schwann cells (SCs), we induced beta(1) integrin clustering on suspended cells using an immobilized antibody and recovered a complex containing beta(1) integrin, FAK, paxillin, and schwannomin. ⋯ Additionally, colocalization of FAK, paxillin, and schwannomin with beta(1) integrin in filopodia and small focal contacts remained unchanged. We conclude that SCs do not require active rho to recruit signaling and structural proteins to beta(1) integrins clustered at the plasma membrane. Rho is required to establish large focal adhesions and to spread and stabilize plasma membrane extensions.