Glia
-
The mechanisms underlying neuropathic pain are poorly understood. However, several studies have implied a role for reactive microglia located in the dorsal horn in neuropathic pain. To clarify the roles of activated microglia in neuropathic pain, we investigated the interactions among microglia and other neural components in the dorsal horn using electron microscopy. ⋯ This microglial engulfment was rarely observed in the normal dorsal horn, and the number of microglia attached to myelinated axons was markedly increased on postoperative day 7 on the operated side. However, after blocking the P2Y12 ATP receptor in microglia by intrathecal administration of its antagonist, AR-C69931MX, the increase in the number of microglia attached to myelinated axons, as well as the development of tactile allodynia, were markedly suppressed, although the number of activated microglia did not change remarkably. These results indicate that engulfment of myelinated axons by activated microglia via P2Y12 signaling in the dorsal horn may be a critical event in the pathogenesis of neuropathic pain.
-
Accumulating evidence suggests that spinal astrocytes play an important role in the genesis of persistent pain, by increasing the activity of spinal cord nociceptive neurons, i.e., central sensitization. However, direct evidence of whether activation of astrocytes is sufficient to induce chronic pain symptoms is lacking. We investigated whether and how spinal injection of activated astrocytes could produce mechanical allodynia, a cardinal feature of chronic pain, in naïve mice. ⋯ In particular, mechanical allodynia induced by TNF-α-activated astrocytes was reversed by a MCP-1 neutralizing antibody. Finally, pretreatment of astrocytes with MCP-1 siRNA attenuated astrocytes-induced mechanical allodynia. Taken together, our results suggest that activated astrocytes are sufficient to produce persistent pain symptom in naïve mice by releasing MCP-1.