Glia
-
Glutamate (Glu) is a major excitatory neurotransmitter of the mammalian central nervous system and under normal conditions plays an important role in information processing in the brain. Therefore, extracellular Glu is subject to strong homeostasis. Astrocytes in the brain have been considered to be mainly responsible for the clearance of extracellular Glu. ⋯ When the cultures were treated with ouabain, an inhibitor of Na(+)/K(+)-ATPase, a low concentration of Glu resulted in massive neuronal death that was also suppressed by cotreatment with an antagonist of NMDA receptors. In this case, however, cotreatment with DHK significantly protected neurons from death, suggesting that GLT-1 was responsible for the death of neurons. The present study provides evidence suggesting that astrocytes use their Glu transporter GLT-1 to protect neurons from Glu toxicity, but, ironically, also use GLT-1 to kill neurons through Glu toxicity depending on their status.
-
Comparative Study
Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS.
In this study, we investigate the expression of fractalkine (CX3CL1) and the fractalkine receptor (CX3CR1) in the naive rat and mouse central nervous system (CNS). We determine if the expression of this chemokine and its receptor are altered during chronic or acute inflammation in the CNS. In addition, we determine if CX3CL1, which has been reported to be chemoattractant to leukocytes in vitro, is capable of acting as a chemoattractant in the CNS in vivo. ⋯ There is a decrease in neuronal CX3CR1 expression. Acute inflammatory responses in the CNS, induced by stereotaxic injections of lipopolysaccharide or kainic acid, results in activation of microglia and astrocytes but no detectable changes in the glial expression of CX3CL1 or CX3CR1. The expression of CX3CL1 and CX3CR1 by glial cells during inflammation in the CNS may be influenced by the surrounding cytokine milieu, which has been shown to differ in acute and chronic neuroinflammation.
-
Glial cell line-derived neurotrophic factor (GDNF) plays several important roles in the survival and recovery of mature neurons during ischemia. We examined the possibility that the expression of GDNF mRNA and the release of GDNF protein are regulated differentially in cultured astrocytes from the stroke-prone spontaneously hypertensive rat (SHRSP) compared with those from Wistar Kyoto rats (WKY) during hypoxia and reoxygenation (H/R) and after exposure to glutamate and hydrogen peroxide (H(2)O(2)). The mRNA expression was quantitated by reverse transcription-polymerase chain reaction (RT-PCR) based on the fluorescent TaqMan methodology. ⋯ Levels of GDNF mRNA and protein in SHRSP were significantly lower than in WKY. These findings indicate that GDNF production in SHRSP astrocytes was low in response to H/R, glutamate, and H(2)O(2), compared with that observed in WKY. We conclude that the attenuated production of GDNF in astrocytes is involved in neuronal vulnerability in SHRSP during H/R, as GDNF production, which is stimulated by glutamate and H(2)O(2), is closely related to the protective effect against H/R-mediated neurotoxicity.
-
The striatum has been implicated as the site of action mediating neurotoxic effects of interleukin-1 (IL-1) during ischemia. However, the molecular mechanisms underlying these events have yet to be fully addressed. In the present study, primary cultures of rat striatal cells were used as a model for the study of IL-1 signaling pathways in the striatum. ⋯ The p38 MAP kinase inhibitor SB203580 failed to inhibit the effects of IL-1 on NF-kB translocation or gene transcription. These studies have demonstrated significant aspects of the IL-1 signaling cascade in cultured striatum. Of particular interest is the finding that IL-1 stimulated activation of p38 MAP kinase and NF-kB in striatal astrocytes exclusively.
-
Traumatic brain injury is followed by increased extracellular glutamate concentration. Uptake of glutamate is mainly mediated by the glial glutamate transporters GLAST and GLT-1. Extent and distribution of GLAST and GLT-1 were studied in a rat model of controlled cortical impact injury (CCII). ⋯ These results support the hypothesis that reduced astrocytic GLAST and GLT-1 protein levels following CCII contribute to evolving secondary injury. Microglia are capable of de novo expressing glutamate transporter proteins, indicating that the expression of glial and neuronal glutamate transporters is not restricted to a specific glial or neuronal lineage. Ramified microglia may play an important compensatory role in the early regulation of extracellular glutamate after CCII.