Molecular and cellular biochemistry
-
Mol. Cell. Biochem. · Jun 2007
Inhibition of nitric oxide synthase enhances contractile response of ventricular myocytes from streptozotocin-diabetic rats.
The contractile hyporesponsiveness of the streptozotocin diabetic rat heart in vitro to beta-adrenergic agonists is eliminated when the heart is perfused with N(G)-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor of nitric oxide synthase (NOS). The following study evaluated the hypothesis that an increased production of NO/cGMP within the diabetic myocyte inhibits the beta-adrenergic-stimulated increase in calcium current and contractile response. Male Sprague-Dawley rats were given an intravenous injection of streptozotocin (60 mg/kg). ⋯ Acute superfusion of the diabetic myocyte with L-NAME (1 mM) decreased basal cGMP and markedly enhanced the shortening response to isoproterenol but did not alter isoproterenol-stimulated calcium current. These data suggest that increased production of NO/cGMP within the diabetic myocyte suppressed beta-adrenergic stimulated shortening of the myocyte. However, NO/cGMP apparently does not suppress shortening of the myocyte by inhibition of the beta-stimulated calcium current.
-
Mol. Cell. Biochem. · Jun 2007
Selenium protects the immature rat heart against ischemia/reperfusion injury.
The aim of the study was to find out whether administration of selenium (Se) will protect the immature heart against ischemia/reperfusion. The control pregnant rats were fed laboratory diet (0.237 mg Se/kg diet); experimental rats received 2 ppm Na(2)SeO(3) in the drinking water from the first day of pregnancy until day 10 post partum. The concentration of Se in the serum and heart tissue was determined by activation analysis, the serum concentration of NO by chemiluminescence, cardiac concentration of lipofuscin-like pigment by fluorescence analysis. ⋯ Moreover, Se supplementation increased the sensitivity to the inotropic effect of ISO, decreased cardiac concentration of lipofuscin-like pigment and serum concentration of NO. Our results suggest that Se protects the immature heart against ischemia/reperfusion injury. It seems therefore, that ROS may affect the function of the neonatal heart, similarly as in adults.