Molecular and cellular biochemistry
-
Mol. Cell. Biochem. · Nov 2013
Response of rat lung tissue to short-term hyperoxia: a proteomic approach.
An inspiratory oxygen fraction of 1.0 is often required to avoid hypoxia both in many pre- and in-hospital situations. On the other hand, hyperoxia may lead to deleterious consequences (cell growth inhibition, inflammation, and apoptosis) for numerous tissues including the lung. Whereas clinical effects of hyperoxic lung injury are well known, its impact on the expression of lung proteins has not yet been evaluated sufficiently. ⋯ Expression of 14 proteins were significantly altered: two proteins were up-regulated and 12 proteins were down-regulated. Even though NH was comparatively short termed, significant alterations in lung protein expression could be demonstrated up to 7 days after hyperoxia. The identified proteins indicate an association with cell growth inhibition, regulation of apoptosis, and approval of structural cell integrity.
-
Mol. Cell. Biochem. · Nov 2013
Overexpression of β-NGF promotes differentiation of bone marrow mesenchymal stem cells into neurons through regulation of AKT and MAPK pathway.
Bone marrow stromal stem cells (BMSCs) are fibroblastic in shape and capable of self-renewal and have the potential for multi-directional differentiation. Nerve growth factor (NGF), a homodimeric polypeptide, plays an important role in the nervous system by supporting the survival and growth of neural cells, regulating cell growth, promoting differentiation into neuron, and neuron migration. Adenoviral vectors are DNA viruses that contain 36 kb of double-stranded DNA allowing for transmission of the genes to the host nucleus but not inserting them into the host chromosome. ⋯ In contrast, Ad-β-NGF effectively induced the differentiation of BMSCs without causing any cytopathic phenomenon and apoptotic cell death. Moreover, Ad-β-NGF recovered the expression level of phosphorylated AKT and MAPKs in cells exposed to chemical reagents. Taken together, these results suggest that β-NGF gene transfection promotes the differentiation of BMSCs into neurons through regulation of AKT and MAPKs signaling pathways.