Synapse
-
Several addictive or neurotoxic drugs are dependent on the dopamine transporter (DAT) and/or vesicular monoamine transporter (VMAT2) to exert their detrimental effects on dopamine neurons. For example, methamphetamine and MPTP are substrates for both DAT and VMAT2, with the ratio of DAT to VMAT2 in striatum being a determinant of the degree of toxicity inflicted by these drugs on dopamine neurons. Thus, the susceptibility of dopamine neurons to agents whose pharmacology involves DAT and VMAT2 may vary during development if the ontogeny of DAT and VMAT2 differs, and this is relevant as exposure of dopamine neurons to toxic agents during development is hypothesized to underlie some neurological or psychiatric disorders. ⋯ Dopamine concentration was also determined in striatal tissue from the same brains. These data indicate that in striatum of primates, unlike rodents, there is a sharp increase in DAT and VMAT2 expression after mid-gestation, with adult levels being attained at the time of birth. In addition, this study demonstrated that there is a coordinated expression of DAT and VMAT2 from the time of mid-gestation to adulthood.
-
Local anesthetics have been widely used for regional anesthesia and the treatment of cardiac arrhythmias. Recent studies have also demonstrated that low-dose systemic local anesthetic infusion has neuroprotective properties. Considering the fact that excessive glutamate release can cause neuronal excitotoxicity, we investigated whether local anesthetics might influence glutamate release from rat cerebral cortex nerve terminals (synaptosomes). ⋯ Inhibition of protein kinase C (PKC) and protein kinase A (PKA) also prevented the action of lidocaine or bupivacaine. These results show that local anesthetics inhibit glutamate release from rat cortical nerve terminals. This effect is linked to a decrease in [Ca²⁺]C caused by Ca²⁺ entry through presynaptic voltage-dependent Ca²⁺ channels and the suppression of the PKA and PKC signaling cascades.
-
Alzheimer's disease (AD), the most prevalent neurodegenerative disease in the elderly, leads to progressive loss of memory and cognitive deficits. Amyloid-β protein (Aβ) in the brain is thought to be the main cause of memory loss in AD. Melatonin, an indole hormone secreted by the pineal gland, has been reported to produce neuroprotective effects. ⋯ We showed that intrahippocampal injection of Aβ1-42 or Aβ31-35 impaired hippocampal LTP in vivo, while chronic melatonin treatment reversed Aβ1-42- or Aβ31-35-induced impairments in LTP induction. Intrahippocampal injection of Aβ31-35 impaired spatial learning and decreased the power of theta rhythm in the CA1 region induced by tail pinch, and these synaptic, circuit, and learning deficits were rescued by chronic melatonin treatment. These results provide evidence for the neuroprotective action of melatonin against Aβ insults and suggest a strategy for alleviating cognition deficits of AD.