Journal of neurotrauma
-
Journal of neurotrauma · Apr 1997
Comparative StudyEarly neuropathologic effects of mild or moderate hypoxemia after controlled cortical impact injury in rats.
Hypoxemia has detrimental effects after traumatic brain injury (TBI) in both experimental models and humans. The purpose of this study was to determine the effect of mild or moderate hypoxemia on early histologic and motor functional outcome after controlled cortical impact (CCI) in rats. Anesthetized rats underwent CCI and were randomized to receive mild (FiO2 = 13%, n = 6), moderate (FiO2 = 11%, n = 9), or no (FiO2 = 33%, n = 6) hypoxemia for 30 min after trauma. ⋯ TUNEL-positive neurons were seen in ipsilateral cortex and dentate gyrus at 6, 24, and 72 h after trauma, and in ipsilateral CA3 hippocampal neurons and thalamus at 24 and 72 h. Moderate hypoxemia augments CA3 neuronal death and early motor functional deficits after CCI. The pattern of DNA fragmentation in selectively vulnerable neurons suggests that apoptosis may play a role in the delayed neuronal death seen after TBI.
-
Journal of neurotrauma · Apr 1997
L-arginine and superoxide dismutase prevent or reverse cerebral hypoperfusion after fluid-percussion traumatic brain injury.
To determine whether treatment with L-arginine or superoxide dismutase (SOD) would prove effective in reducing cerebral hypoperfusion after traumatic brain injury (TBI), we measured cerebral blood flow (CBF) using laser Doppler flowmetry (LDF) in rats treated before or after moderate (2.2 atm) fluid-percussion (FP) TBI. Rats were anesthetized with isoflurane and prepared for midline FP TBI and then for LDF by thinning the calvaria using an air-cooled drill. Rats were then randomly assigned to receive sham injury, sham injury plus L-arginine (100 mg/kg, 5 min after sham TBI), TBI plus 0.9% NaCl, TBI plus L-arginine (100 mg/kg, 5 min post-TBI), TBI plus SOD (24,000 U/kg pre-TBI + 1600 units/kg/min for 15 min after TBI), or TBI plus SOD and L-arginine. ⋯ Rats treated with L-arginine alone or in combination with SOD exhibited no decreases in CBF after TBI. CBF in the SOD-treated group decreased significantly within 15 min after TBI but returned to baseline levels by 45 min after TBI. These studies indicate that L-arginine but not D-arginine administered after TBI prevents posttraumatic hypoperfusion and that pretreatment with SOD will restore CBF after a brief period of hypoperfusion.
-
Journal of neurotrauma · Apr 1997
Effects of the novel NMDA antagonists CP-98,113, CP-101,581 and CP-101,606 on cognitive function and regional cerebral edema following experimental brain injury in the rat.
The present study evaluated the effects of two novel N-methyl-D-aspartate (NMDA) receptor blockers and ifenprodil derivatives, CP-101,606 and CP-101,581, and their racemic mixture CP-98,113, on spatial memory and regional cerebral edema following experimental fluid-percussion (FP) brain injury in the rat (n = 66). Fifteen minutes after brain injury (2.5 atm), animals received either (1) CP-98,113 (5 mg/kg, i.p., n = 11), (2) CP-101,581 (5 mg/kg, i.p., n = 13), (3) CP-101,606 (6.5 mg/kg, i.p., n = 12), or (4) DMSO vehicle (equal volume, n = 12); followed by a continuous 24-h subcutaneous infusion of drug at a rate of 1.5 mg/kg/h by means of miniature osmotic (Alzet) pumps implanted subcutaneously. Control (uninjured) animals were subjected to identical anesthesia and surgery without injury and received DMSO vehicle (n = 8); CP-98,113 (5 mg/kg, i.p., n = 3); CP-101,581 (5 mg/kg, i.p., n = 3); or CP-101,606 (6.5 mg/kg, i.p., n = 3). ⋯ Administration of either CP-98,113, CP-101,581, or CP-101,606 had no effect on sham (uninjured) animals, but significant attenuated spatial memory impairment assessed at 2 days postinjury (p = 0.004, p = 0.02, or p = 0.02, respectively). Administration of CP-89,113 but not CP-101,581 or CP-101,606 significantly reduced the extent of regional cerebral edema in the cortex adjacent to the site of injury (p < 0.05) and in the ipsilateral hippocampus (p < 0.05) and thalamus (p < 0.05). These results suggest that excitatory neurotransmission may play a pivotal role in the pathogenesis of memory dysfunction following traumatic brain injury (TBI) and that blockade of the NMDA receptor may significantly attenuate cognitive deficits associated with TBI.