Journal of neurotrauma
-
Journal of neurotrauma · Apr 1999
Sequential pharmacotherapy with magnesium chloride and basic fibroblast growth factor after fluid percussion brain injury results in less neuromotor efficacy than that achieved with magnesium alone.
Combinational pharmacotherapy with individually efficacious agents is a potential strategy for the treatment of traumatic central nervous system (CNS) injury. Basic fibroblast growth factor (bFGF) has been shown to be neuroprotective against excitotoxic, ischemic, and traumatic injury to the CNS, while acute posttraumatic treatment with magnesium (Mg2+) has been shown to decrease the motor and cognitive deficits following experimental brain injury. In this study, bFGF and Mg2+ were evaluated separately and in combination to assess their potential additive effects on posttraumatic neurological recovery and histological cell loss (lesion volume). ⋯ Animals treated with either bFGF alone or a combination of MgCl2 and bFGF displayed no significant neurological improvement relative to vehicle-treated injured animals at 7 days. No effect of any drug treatment of combination was observed on the extent of the postinjury lesion volume in the injured cortex. These results suggest that caution must be exercised when combining "cocktails" of potentially neuroprotective compounds in the setting of traumatic brain injury.
-
The purpose of this study was to examine the effects of mild hypothermia and hyperthermia on glutamate excitotoxicity. Glutamate-induced cortical lesions were produced in hypothermic (32 degrees C), normothermic (37 degrees C), and hyperthermic (40 degrees C) rats by perfusion of a 0.5 M glutamate solution via a microdialysis probe. The volume of the lesion 7 days after glutamate perfusion was quantified histologically by image analysis. ⋯ The volume of 14C diffusion also increased as brain temperature increased. These results provide evidence that small variations of brain temperature modify glutamate excitotoxicity. The results also suggest that the change in glutamate diffusion in the extracellular space is one mechanism by which mild hypothermia and hyperthermia exert their protective and harmful effects respectively.
-
Journal of neurotrauma · Apr 1999
Case ReportsCitalopram treatment of traumatic brain damage in a 6-year-old boy.
Traumatic brain damage may cause acute emotional symptoms such as uncontrolled crying, apathy, and sleep problems. Rehabilitation may be less effective in patients afflicted by these symptoms. Citalopram, a selective serotonin reuptake inhibitor (SSRI), has a documented immediate and dramatic effect on pathological crying in stroke patients. The present case history of a 6-year-old boy with a traumatic right-sided hemorrhage in the basal ganglia indicates that early SSRI treatment has a dramatic effect on pathological crying and in addition may have a concomitant beneficial effect on motor paresis, sleep disturbance, and neurobehavioral problems.
-
Journal of neurotrauma · Apr 1999
Effect of traumatic brain injury in mice deficient in intercellular adhesion molecule-1: assessment of histopathologic and functional outcome.
Intercellular adhesion molecule-1 (ICAM-1) is an adhesion molecule of the immunoglobulin family expressed on endothelial cells that is upregulated in brain as part of the acute inflammatory response to traumatic brain injury (TBI). ICAM-1 mediates neurologic injury in experimental meningitis and stroke; however, its role in the pathogenesis of TBI is unknown. We hypothesized that mutant mice deficient in ICAM-1 (-/-) would have decreased neutrophil accumulation, diminished histologic injury, and improved functional neurologic outcome versus ICAM-1 +/+ wild type control mice after TBI. ⋯ Robust expression of ICAM-1 was readily detected in choroid plexus and cerebral endothelium at 24 h in ICAM-1 +/+ mice but not in ICAM-1 -/- mice. No differences between groups were observed in brain neutrophil accumulation (9.4 +/- 2.2 versus 11.1 +/- 3.0 per x100 field, -/- versus +/+), wire grip score, MWM latency, or lesion volume (7.24 +/- 0.63 versus 7.21 +/- 0.45 mm3, -/- versus +/+). These studies fail to support a role for ICAM-1 in the pathogenesis of TBI.
-
Journal of neurotrauma · Apr 1999
Freeze-fracture and cytochemical evidence for structural and functional alteration in the axolemma and myelin sheath of adult guinea pig optic nerve fibers after stretch injury.
Recent work in animal models of human diffuse axonal injury has generated the hypothesis that, rather than there being physical disruption of the axolemma at the time of injury, a pertubation of the membrane occurs, which leads, over time, to a dysfunction of the physiology of the axolemmal. This dysfunction is posited to lead to a disruption of ionic homeostasis within the injured axon, leading to secondary axotomy some hours after the initial insult. We decided to test the hypothesis that membrane pump/ion channel activity or function is compromised and this would be reflected in structural changes within the axolemma and myelin sheath. ⋯ There was loss of ecto-Ca-ATPase activity but increased labeling for p-NPPase activity at sites of dissociation of compacted myelin. Quantitative freeze-fracture demonstrated statistically significant changes in membrane structure. We provide support for the hypothesis that structural and functional changes occur in the axolemma and myelin sheath at nondisruptive axonal injury.