Journal of neurotrauma
-
Journal of neurotrauma · Dec 2003
Enhanced vulnerability to NMDA toxicity in sublethal traumatic neuronal injury in vitro.
Traumatic brain injury causes neuronal disruption and triggers secondary events leading to additional neuronal death. To study injuries triggered by secondary events, we exposed cultured cortical neurons to sublethal mechanical stretch, thus eliminating confounding death from primary trauma. Sublethally stretched neurons maintained cell membrane integrity, viability, and electrophysiological function. ⋯ To test whether this specificity requires physical interactions between NMDARs and cytoskeletal elements, we perturbed actin filaments and microtubules, both of which are linked to NMDARs. This had no effect on the stretch-induced vulnerability to NMDA, suggesting that sublethal stretch does not affect cell survival through the cytoskeleton. Our data illustrate that sublethal in vitro stretch injury triggers distinct signaling pathways that lead to secondary injury, rather than causing a generalized increase in vulnerability to secondary insults.
-
Journal of neurotrauma · Dec 2003
Moderate controlled cortical contusion in pigs: effects on multi-parametric neuromonitoring and clinical relevance.
Over the last decade, routine neuromonitoring of ICP and CPP has been extended with new on-line techniques such as microdialysis, tissue oxygen (ptiO(2)), acid-base balance (ptiCO(2), pH) and CBF measurements, which so far have not lead to clear-cut therapy approaches in the neurointensive care unit. This is partially due to the complex pathophysiology following a wide-range of brain injuries, and the lack of suitable animal models allowing simultaneous, clinically relevant neuromonitoring under controlled conditions. Therefore, a controlled cortical impact (CCI) model in large animals (pig) has been developed. ⋯ Evaluation of brain water content and histology (12 h post-CCI) showed ipsilateral brain swelling by 5% and massive cell damage underneath the injury site which correlated with changes of ICP, CPP, glutamate, lactate, and ptiO(2) within the first hours post-CCI. Moderate controlled cortical contusion in pigs induced a complex pattern of pathophysiological processes which led to 'early' histological damage. Thus, this new large animal model will enable us to investigate the effect of therapeutic interventions on multi-parametric neuromonitoring and histological outcome, and to translate the data into clinical practice.
-
Journal of neurotrauma · Dec 2003
Effect of decompression craniotomy on increase of contusion volume and functional outcome after controlled cortical impact in mice.
If, how, and when decompressive craniotomy should be used for the treatment of increased intracranial pressure after traumatic brain injury are widely discussed clinical subjects. Despite the large number of clinical studies addressing this issue, experimental evidence of a beneficial or detrimental role of decompressive craniotomy after brain trauma is sparse. Therefore, we investigated the influence of craniotomy on intracranial pressure, contusion volume, and functional outcome in a model of traumatic brain injury in mice. ⋯ Furthermore, craniotomized mice showed significantly improved motor function in a beam walking task (p < 0.04) and faster recovery of body weight after trauma (p < 0.02). Our results demonstrate that craniotomy blunts post-traumatic ICP increase, significantly reduces secondary brain damage and improves functional outcome after experimental TBI. Careful clinical evaluation of craniotomy as a therapeutic option after TBI in man may therefore be indicated.