Journal of neurotrauma
-
Journal of neurotrauma · Nov 2004
Comparative Study Clinical TrialGFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome.
Research indicates that glial fibrillary acidic protein (GFAP), part of the astroglial skeleton, could be a marker of traumatic brain injury (TBI). S100B, an astroglial protein, is an acknowledged marker of TBI. Our goal was to analyze the relationship of GFAP/S100B to brain damage and outcome, and to compare the accuracy of GFAP/S100B for prediction of mortality after TBI. ⋯ S100B was lower in focal lesions of <25 mL than in non-evacuated mass lesions (p < 0.0005) and lower in swelling than in shifts of >0.5 cm (p < 0.005). GFAP and S100B were lower in ICP < 25 than ICP > or = 25 (p < 0.0005), in CPP > or = 60 than CPP < 60 (p < 0.0005), in MAP > 70 than MAP < or = 70 mm Hg, and in GOS 4-5 than GOS 1 (p < 0.0005). Both measurement of GFAP and S100B is a useful non-invasive means of identifying brain damage with some differences based on the pattern of TBI and accompanying multiple trauma and/or shock.
-
Journal of neurotrauma · Nov 2004
Unilateral frontal lobe contusion and forelimb function: chronic quantitative and qualitative impairments in reflexive and skilled forelimb movements in rats.
Traumatic brain injury induced by mechanical impacts of the head can be modeled in rats in order to investigate acute and chronic therapy. Because frontal lobe contusion affects the neural representation of the forelimb in both the neocortex and basal ganglia, the purpose of the present experiments was to examine the chronic changes in reflexive and skilled forelimb induced by the injury. Contusions produced a cavity in the sensorimotor cortex, accompanied by shrinkage of the pyramidal tract, loss of cells in the dorsolateral striatum, and enlargement of the lateral ventricle. ⋯ A qualitative analysis from frame-by-frame video records indicated that when reaching for single pellets, impairments in forelimb use primarily affected the contralateral-to-lesion limb, especially limb aiming, supination, and food pellet release. Impairments in the ipsilateral-to-lesion forelimb were generally, but not exclusively, secondary to postural abnormalities. The wide range of chronic impairments in forelimb use following contusion injuries are discussed in relation to the anatomical and behavioral origins of the impairments and the potential use of forelimb tests in the assessment of therapy for traumatic brain injury to the frontal cortex.
-
Journal of neurotrauma · Nov 2004
Systemic microcirculation after complete high and low thoracic spinal cord section in rats.
Spinal cord injury (SCI) produces multiple systemic and metabolic alterations. Although some systemic alterations could be associated with ischemic organ damage, little is known about microvascular blood flow (MVBF) in organs other than the spinal cord after acute SCI. We used laser Doppler flowmetry in anesthetized rats to assess MVBF in several tissues before and after complete T-2 and T-9 SCI at 1 h and on days 1, 3, and 7 post-SCI. ⋯ Significant differences between MVBF after T-2 and T-9 SCI occurred only in liver. MVBF significantly correlated with regional peripheral vascular resistances (assessed using the MAP/MVBF ratio), but not with MAP. In conclusion, organ-specific changes in systemic MVBF that are influenced by the level of SCI, could contribute to organ dysfunction.
-
Journal of neurotrauma · Nov 2004
Functional and morphological assessment of a standardized rat sciatic nerve crush injury with a non-serrated clamp.
Peripheral nerve researchers frequently use the rat sciatic nerve crush as a model for axonotmesis. Unfortunately, studies from various research groups report results from different crush techniques and by using a variety of evaluation tools, making comparisons between studies difficult. The purpose of this investigation was to determine the sequence of functional and morphologic changes after an acute sciatic nerve crush injury with a non-serrated clamp, giving a final standardized pressure of p = 9 MPa. ⋯ At 8 weeks after the crush injury, a full functional recovery was predicted by SFI, EPT, TOA, and gait-stance duration, while all the other parameters were still recovering their original values. On the other hand, only two of the histomorphometric parameters of regenerated nerve fibers, namely myelin thickness/axon diameter ratio and fiber/axon diameter ratio, returned to normal values while all other parameters were significantly different from normal values. The employment of traditional methods of functional evaluation in conjunction with the modern techniques of computerized analysis of gait and histomorphometric analysis should thus be recommended for an overall assessment of recovery in the rat sciatic nerve crush model.