Journal of neurotrauma
-
Journal of neurotrauma · Sep 2004
Multicenter Study Comparative StudyInaccurate early assessment of neurological severity in head injury.
Intubation, which requires sedation and myorelaxants, may lead to inaccurate neurological evaluation of severely head-injured patients. Aims of this study were to describe the early clinical evolution of traumatic brain injured (TBI) patients admitted to intensive care unit (ICU), to identify cases of over-estimated neurological severity, and to quantify the risk factors for this over-estimation. A total of 753 TBI patients consecutively admitted to ICU of three academic neurosurgical hospitals (NSH) were assessed. ⋯ The main features distinguishing MS from truly severe cases were younger age, higher Glasgow Coma Scale (GCS) score at all time points, Marshall classification of Computerized Tomographic (CT) scan mostly Diffuse Injury I and II, fewer pupillary abnormalities, and a lower frequency of hypoxia, hypotension, and extra-cranial injuries. In a certain proportion of non-surgical TBI patients, mostly intubated and sedated, neurological examination is difficult and severity can be over-estimated. Risk factors for this inaccurate evaluation can be identified, and clinical decisions should be based on further examination.
-
Journal of neurotrauma · Sep 2004
Multicenter Study Comparative StudyContinuous versus intermittent cerebrospinal fluid drainage after severe traumatic brain injury in children: effect on biochemical markers.
Drainage of cerebrospinal fluid (CSF) is routinely used in the treatment of severe traumatic brain injury (TBI), either continuously or intermittently in response to increases in intracranial pressure (ICP). There has been little study of the effect of CSF drainage method on the biochemistry, pathophysiology or outcome of TBI in adults or children. Having previously reported that a variety of markers of injury or repair increase in CSF after severe TBI, we chose to evaluate directly the effect of CSF drainage method on the biochemistry and volume of CSF drained as well as ICP. ⋯ We conclude that the method of CSF drainage greatly affects concentrations of CSF markers after TBI and may influence ICP. The influence of method on CSF marker concentration must be kept in mind when interpreting studies of CSF biomarkers. The striking difference in biomarker concentration, CSF volume drained, and ICP suggests the need for a randomized trial directly comparing these two approaches in infants and children with severe TBI.
-
Journal of neurotrauma · Sep 2004
Comparative StudyTransplantation of Schwann cells and olfactory ensheathing glia after spinal cord injury: does pretreatment with methylprednisolone and interleukin-10 enhance recovery?
Methylprednisolone (MP) and interleukin-10 (IL-10) are tissue protective acutely after spinal cord injury (SCI); their combination offers additive protection (Takami et al., 2002a). Our study examined if acute administration of MP (30 mg/kg i.v. at 5 min, and 2 and 4 h after injury) and IL-10 (30 mg/kg i.p. at 30 min after injury) increases the efficacy of Schwann cell (SC) or SC plus olfactory ensheathing glia (SC/OEG) grafts transplanted into rat thoracic cord 1 week after contusive injury. Efficacy was determined by histology, anterograde and retrograde tracing, immunohistochemistry for gliosis and specific nerve fibers, and several behavioral tests. ⋯ Only the combination of MP/IL-10 with SC/OEG transplants significantly improved gross locomotor performance (BBB scores) over injury-only controls. MP/IL-10 given prior to SC-only transplants, however, worsened behavioral outcome. Because beneficial effects of MP/IL-10 were not always additive when combined with cell transplantation, we need to understand (1) how tissue protective agents may transform the milieu of the injured spinal cord to the benefit or detriment of later transplanted cells and (2) whether neuroprotectants need to be re-administered at the time of cell grafting or less invasive transplantation techniques employed to reduce damage to tissue spared by an earlier protection strategy.
-
Journal of neurotrauma · Sep 2004
Comparative StudyThe protective effect of cyclosporin A upon N-acetylaspartate and mitochondrial dysfunction following experimental diffuse traumatic brain injury.
Pre- and post-injury Cyclosporin A (CsA) administration has shown neuroprotective properties by ameliorating mitochondrial damage. The aim of this study was to assess the effect of CsA upon N-acetylaspartate (NAA) reduction and ATP loss, two sensitive markers of mitochondrial dysfunction and bioenergetic impairment. Adult male Sprague-Dawley rats were exposed to impact acceleration traumatic brain injury (2 m/450 g) and randomized into the following experimental groups: intrathecal CsA/vehicle treated (n = 12), intravenous CsA/vehicle treated (n = 18) and sham (n = 12). ⋯ In conclusion, CsA is capable of restoring ATP and blunting NAA reduction. Intravenous infusion of 35 mg/kg appears to be the optimal therapeutic strategy in this model. These findings contribute to the notion that CsA achieves neuroprotection, preserving mitochondrial function, and provides a rationale for the assessment of CsA in the clinical setting where MR spectroscopy can monitor NAA and ATP in brain-injured patients.
-
Journal of neurotrauma · Sep 2004
Comparative StudyCerebral pressure autoregulation is intact and is not influenced by hypothermia after traumatic brain injury in rats.
In head-injured patients and experimental traumatic brain injury (TBI), important cerebrovascular abnormalities include decreases in cerebral blood flow (CBF) and impairment of cerebral pressure autoregulation. We evaluated CBF and pressure autoregulation after fluid percussion injury (FPI) and hypothermia in rats with the hypothesis that hypothermia would ameliorate changes in posttraumatic CBF. Male Sprague-Dawley rats, intubated and mechanically ventilated, were prepared for parasagittal FPI (1.8 atm) and laser Doppler CBF flow (LDF) measurement. ⋯ Thus, in these experiments, absolute CBF decreased with hypothermia and FPI, while neither hypothermia nor FPI significantly altered autoregulation. In the second study, autoregulatory function was not different before TBI when comparing random and sequential blood pressure changes, but, when comparing the groups after TBI at the 60 mm Hg blood pressure level, CBF was significantly lower in the sequential group than in the random order group. This suggests that the mechanism of creating hypotension, whether random or sequential, significantly affects the measurement of CBF and autoregulation after TBI in rats.