Journal of neurotrauma
-
Journal of neurotrauma · Sep 2004
Comparative StudyThe protective effect of cyclosporin A upon N-acetylaspartate and mitochondrial dysfunction following experimental diffuse traumatic brain injury.
Pre- and post-injury Cyclosporin A (CsA) administration has shown neuroprotective properties by ameliorating mitochondrial damage. The aim of this study was to assess the effect of CsA upon N-acetylaspartate (NAA) reduction and ATP loss, two sensitive markers of mitochondrial dysfunction and bioenergetic impairment. Adult male Sprague-Dawley rats were exposed to impact acceleration traumatic brain injury (2 m/450 g) and randomized into the following experimental groups: intrathecal CsA/vehicle treated (n = 12), intravenous CsA/vehicle treated (n = 18) and sham (n = 12). ⋯ In conclusion, CsA is capable of restoring ATP and blunting NAA reduction. Intravenous infusion of 35 mg/kg appears to be the optimal therapeutic strategy in this model. These findings contribute to the notion that CsA achieves neuroprotection, preserving mitochondrial function, and provides a rationale for the assessment of CsA in the clinical setting where MR spectroscopy can monitor NAA and ATP in brain-injured patients.
-
Journal of neurotrauma · Sep 2004
Comparative StudyCerebral pressure autoregulation is intact and is not influenced by hypothermia after traumatic brain injury in rats.
In head-injured patients and experimental traumatic brain injury (TBI), important cerebrovascular abnormalities include decreases in cerebral blood flow (CBF) and impairment of cerebral pressure autoregulation. We evaluated CBF and pressure autoregulation after fluid percussion injury (FPI) and hypothermia in rats with the hypothesis that hypothermia would ameliorate changes in posttraumatic CBF. Male Sprague-Dawley rats, intubated and mechanically ventilated, were prepared for parasagittal FPI (1.8 atm) and laser Doppler CBF flow (LDF) measurement. ⋯ Thus, in these experiments, absolute CBF decreased with hypothermia and FPI, while neither hypothermia nor FPI significantly altered autoregulation. In the second study, autoregulatory function was not different before TBI when comparing random and sequential blood pressure changes, but, when comparing the groups after TBI at the 60 mm Hg blood pressure level, CBF was significantly lower in the sequential group than in the random order group. This suggests that the mechanism of creating hypotension, whether random or sequential, significantly affects the measurement of CBF and autoregulation after TBI in rats.