Journal of neurotrauma
-
Journal of neurotrauma · Sep 2004
Multicenter Study Comparative StudyAssessment of the macrophage marker quinolinic acid in cerebrospinal fluid after pediatric traumatic brain injury: insight into the timing and severity of injury in child abuse.
This study measured quinolinic acid (QUIN), a macrophage-microglia derived neurotoxin, in the cerebrospinal fluid (CSF) of children after non-inflicted and inflicted traumatic brain injury (nTBI, iTBI), and correlated QUIN concentrations with age, mechanism of injury (nTBi vs. iTBI), Glasgow Coma Scale (GCS) score and 6-month Glasgow Outcome Score. One hundred fifty-two CSF samples were collected from 51 children with severe TBI (GCS < or = 8). CSF was collected at the time an intraventricular catheter was placed and daily thereafter. ⋯ Despite the lack of a history of trauma in 82% of children with iTBI, 100% had a peak QUIN concentration of >100 nM. There was a significant increase in the CSF concentrations of QUIN following severe nTBI and iTBI in children. Higher initial and peak QUIN concentrations after iTBI may be due to severity of injury, young age, and/or delay in seeking medical care, which allows for increased secondary injury.
-
Journal of neurotrauma · Sep 2004
Comparative StudyComparison of tetrahydrobiopterin and L-arginine on cerebral blood flow after controlled cortical impact injury in rats.
The purpose of this study was to compare the effects of L-arginine and tetrahydrobiopterin administration on post-traumatic cerebral blood flow (CBF) and tissue levels of NO in injured brain tissue. Rats were anesthetized with isoflurane. Mean blood pressure, intracranial pressure, cerebral blood flow using laser Doppler flowmetry (LDF) and brain tissue nitric oxide (NO) concentrations were measured prior to, and for 2 h after a controlled cortical impact injury. ⋯ NO concentration also decreased by approximately 20 pmol/ml from baseline values. L-arginine and tetrahydrobiopterin administration both resulted in a significant preservation of tissue NO concentrations and an improvement in LDF, compared to control animals given saline. These studies demonstrate that tetrahydrobiopterin administration has a beneficial effect on cerebral blood flow that is similar to L-arginine administration, and may suggest that depletion of tetrahydrobiopterin plays a role in the post-traumatic hypoperfusion of the brain.