Journal of neurotrauma
-
Journal of neurotrauma · Aug 2006
Review Meta AnalysisSerum biochemical markers for post-concussion syndrome in patients with mild traumatic brain injury.
Mild traumatic brain injury (MTBI) is a major public health problem in the United States. A significant subset of MTBI patients develop persistent and distressing neurological, cognitive, and behavioral symptoms, known as the post-concussion syndrome (PCS). To date, multiple studies have assessed the relationship between brain-related proteins found in the serum at the time of injury, and the development of PCS. ⋯ Of these markers, S100 appeared to be the best researched. We conclude that no biomarker has consistently demonstrated the ability to predict PCS after MTBI. A combination of clinical factors in conjunction with biochemical markers may be necessary to develop a comprehensive decision rule that more accurately predicts PCS after MTBI.
-
Journal of neurotrauma · Aug 2006
Delayed, post-injury treatment with aniracetam improves cognitive performance after traumatic brain injury in rats.
Chronic cognitive impairment is an enduring aspect of traumatic brain injury (TBI) in both humans and animals. Treating cognitive impairment in the post-traumatic stages of injury often involves the delivery of pharmacologic agents aimed at specific neurotransmitter systems. The current investigation examined the effects of the nootropoic drug aniracetam on cognitive recovery following TBI in rats. ⋯ Drug treatment was terminated during MWM testing on postinjury days 16-20. In this experiment, aniracetam-treated rats did not perform better than vehicle-treated rats. The results of these experiments indicate that aniracetam is an effective treatment for cognitive impairment induced by TBI, even when treatment is delayed for a period of days following injury.
-
Journal of neurotrauma · Aug 2006
Differential behavioral and histopathological responses to graded cortical impact injury in mice.
Controlled cortical impact (CCI) injury, a model of contusive brain injury in humans, is being used with increasing frequency in mice to investigate post-traumatic cell damage and death and to evaluate treatment strategies. Because cellular injury mechanisms and therapeutic approaches may depend on the severity of the initial insult, it is important to utilize a model in which outcomes are sensitive to injury severity. Adult male C57Bl/6 mice were anesthetized and subjected to sham injury (n = 23) or CCI injury at either 0.5 mm (n = 22) or 1.0 mm (n = 22) depth of impact at a velocity of 5 m/sec. ⋯ Regional patterns of IgG extravasation and reactive astrocytosis were similar in the two injured groups, but changes were more persistent in the 1.0 mm group. Both levels of injury resulted in acute loss of neuronal MAP-2 immunoreactivity in the cortex and sub-region specific changes in the hippocampus. Thus, increasing the depth of impact led to similar structural alterations in neurons, astrocytes and the vasculature, but resulted in greater behavioral deficits and cortical and hippocampal cell death.