Journal of neurotrauma
-
Journal of neurotrauma · Dec 2014
Blockade of gap junction hemichannel protects secondary spinal cord injury from activated microglia-mediated glutamate exito-neurotoxicity.
We previously demonstrated that activated microglia release excessive glutamate through gap junction hemichannels and identified a novel gap junction hemichannel blocker, INI-0602, that was proven to penetrate the blood-brain barrier and be an effective treatment in mouse models of amyotrophic lateral sclerosis and Alzheimer disease. Spinal cord injury causes tissue damage in two successive waves. The initial injury is mechanical and directly causes primary tissue damage, which induces subsequent ischemia, inflammation, and neurotoxic factor release resulting in the secondary tissue damage. ⋯ In the present study, we demonstrate that reduction of glutamate-mediated exitotoxicity via intraperitoneal administration of INI-0602 in the microenvironment of the injured spinal cord elicited neurobehavioral recovery and extensive suppression of glial scar formation by reducing secondary tissue damage. Further, this intervention stimulated anti-inflammatory cytokines, and subsequently elevated brain-derived neurotrophic factor. Thus, preventing microglial activation by a gap junction hemichannel blocker, INI-0602, may be a promising therapeutic strategy in spinal cord injury.
-
Journal of neurotrauma · Dec 2014
Impact depth and the interaction with impact speed affect the severity of contusion spinal cord injury in rats.
Spinal cord injury (SCI) biomechanics suggest that the mechanical factors of impact depth and speed affect the severity of contusion injury, but their interaction is not well understood. The primary aim of this work was to examine both the individual and combined effects of impact depth and speed in contusion SCI on the cervical spinal cord. Spinal cord contusions between C5 and C6 were produced in anesthetized rats at impact speeds of 8, 80, or 800 mm/s with displacements of 0.9 or 1.5 mm (n=8/group). ⋯ Increasing impact speed showed similar results at the 1.5-mm impact depth, but not the 0.9-mm impact depth. Linear correlation analysis with finite element analysis strain showed correlations (p<0.001) with nerve fiber damage in the ventral (R(2)=0.86) and lateral (R(2)=0.74) regions of the spinal cord and with WM (R(2)=0.90) and GM (R(2)=0.76) sparing. The results demonstrate that impact depth is more important in determining the severity of SCI and that threshold interactions exist between impact depth and speed.
-
Journal of neurotrauma · Dec 2014
Human NgR-Fc Decoy Protein via Lumbar Intrathecal Bolus Administration Enhances Recovery from Rat Spinal Cord Contusion.
Axonal growth and neurological recovery after traumatic spinal cord injury (SCI) is limited by the presence of inhibitory proteins in myelin, several of which act via the NgR1 protein in neurons. A truncated soluble ligand-binding fragment of NgR1 serves as a decoy and promotes recovery in acute and chronic rodent SCI models. To develop the translational potential of these observations, we created a human sequence-derived NgR1(310)-Fc protein. ⋯ At an intermittent, once every 4 day, lumbar bolus dosing schedule of 0.14 mg/kg/d, NgR1(310)-Fc promoted locomotor rat recovery from spinal cord contusion at least as effectively as continuous infusion in open field and grid walking tasks. Moreover, the intermittent lumbar NgR1(310)-Fc treatment increased the growth of raphespinal axons into the lumbar spinal cord after injury. Thus, human NgR1(310)-Fc provides effective treatment for recovery from traumatic SCI in this preclinical model with a simplified administration regimen that facilitates clinical testing.
-
Journal of neurotrauma · Dec 2014
Adenosine 2A receptor inhibition enhances intermittent hypoxia-induced diaphragm but not intercostal long-term facilitation.
Acute intermittent hypoxia (AIH) elicits diaphragm (Dia) and second external intercostal (T2 EIC) long-term facilitation (LTF) in normal unanesthetized rats. Although AIH-induced phrenic LTF is serotonin dependent, adenosine constrained in anesthetized rats, this has not been tested in unanesthetized animals. Cervical (C2) spinal hemisection (C2HS) abolishes phrenic LTF because of loss of serotonergic inputs 2 weeks post-injury, but LTF returns 8 weeks post-injury. ⋯ KW6002 had no significant effects on contralateral Dia (p=0.447) or T2 EIC LTF (p=0.796). We conclude that moderate AIH induces Dia and T2 EIC LTF after chronic, but not acute cervical spinal injuries. A single A2A receptor antagonist dose enhances AIH-induced Dia LTF in normal rats, but this effect is not significant in chronic (8 weeks) C2HS unanesthetized rats.
-
Journal of neurotrauma · Dec 2014
Assessment of White Matter Loss Using Bond-Selective Photoacoustic Imaging in a Rat Model of Contusive Spinal Cord Injury.
White matter (WM) loss is a critical event after spinal cord injury (SCI). Conventionally, such loss has been measured with histological and histochemical approaches, although the procedures are complex and may cause artifact. Recently, coherent Raman microscopy has been proven to be an emerging technology to study de- and remyelination of the injured spinal cord; however, limited penetration depth and small imaging field prevent it from comprehensive assessments of large areas of damaged tissues. ⋯ By employing the first overtone vibration of CH2 bond as the contrast, the mapping of the WM in an intact spinal cord was achieved in a label-free three-dimensional manner, and the physiological change of the spinal cord before and after injury was observed. Moreover, the recovery of the spinal cord from contusive injury with the treatment of a neuroprotective nanomedicine ferulic-acid-conjugated glycol chitosan (FA-GC) was also observed. Our study suggests that bond-selective PA imaging is a valuable tool to assess the progression of WM pathology after SCI as well as neuroprotective therapeutics in a label-free manner.