Journal of neurotrauma
-
Journal of neurotrauma · Feb 2015
Effect of small molecule vasopressin V1a and V2 receptor antagonists on brain edema formation and secondary brain damage following traumatic brain injury in mice.
The attenuation of brain edema is a major therapeutic target after traumatic brain injury (TBI). Vasopressin (AVP) is well known to play a major role in the regulation of brain water content and vasoendothelial functions and to be involved in brain edema formation. Therefore, the aim of the current study was to analyze the antiedematous efficacy of a clinically relevant, nonpeptidic AVP V1a and V2 receptor antagonists. ⋯ In contrast, ICV administration of AVP V1a receptor antagonist decreased brain edema formation by 68%, diminished post-traumatic increase of ICP by 46%, and reduced secondary contusion expansion by 43% 24 h after CCI. The ICV inhibition of V2 receptors resulted in significant reduction of post-traumatic brain edema by 41% 24 h after CCI, but failed to show further influence on ICP and lesion growth. Hence, centrally applied vasopressin V1a receptor antagonists may be used to reduce brain edema formation after TBI.
-
Journal of neurotrauma · Feb 2015
Alterations in resting state brain networks in concussed adolescent athletes.
Sports-related concussion in adolescents is a major public health issue; however, little is known about the underlying changes in functional brain connectivity. We evaluated connectivity of resting-state brain networks to determine whether alterations in specific networks distinguish adolescents with sports-related concussion from a group of healthy, active control adolescents. Twelve adolescents with a clinical diagnosis of subacute concussion and ten healthy adolescents matched for age, gender, and physical activity completed functional magnetic resonance imaging (fMRI) scanning. ⋯ This preliminary report shows that whole-brain functional connectivity is altered in networks related to cognition and attention in adolescents in the subacute phase following sports-related concussion. This first report in adolescents should be used to inform future studies in larger cohorts of adolescents with sports-related concussion. Increased knowledge of these changes may lead to improvements in clinical management and help to develop rehabilitation programs.
-
Journal of neurotrauma · Feb 2015
Predicting institutionalization after traumatic brain injury inpatient rehabilitation.
Risk factors contributing to institutionalization after inpatient rehabilitation for people with traumatic brain injury (TBI) have not been well studied and need to be better understood to guide clinicians during rehabilitation. We aimed to develop a prognostic model that could be used at admission to inpatient rehabilitation facilities to predict discharge disposition. The model could be used to provide the interdisciplinary team with information regarding aspects of patients' functioning and/or their living situation that need particular attention during inpatient rehabilitation if institutionalization is to be avoided. ⋯ For every 10-year increment in age was associated with a 1.38 times higher risk for institutionalization (95% CI, 1.29, 1.48) and living alone was associated with a 2.34 times higher risk (95% CI, 1.86, 2.94). The c-statistic was 0.780. We conclude that this simple model can predict risk of institutionalization after inpatient rehabilitation for patients with TBI.
-
Journal of neurotrauma · Feb 2015
ReviewAging, neurodegenerative disease and traumatic brain injury: the role of neuroimaging.
Traumatic brain injury (TBI) is a highly prevalent condition with significant effects on cognition and behavior. While the acute and sub-acute effects of TBI recover over time, relatively little is known about the long-term effects of TBI in relation to neurodegenerative disease. ⋯ We also review the evidence for neuroimaging changes associated with unhealthy brain aging in the context of remote TBI. We conclude that neuroimaging biomarkers have significant potential to increase understanding of the mechanisms of unhealthy brain aging and neurodegeneration following TBI, with potential for identifying those at risk for unhealthy brain aging prior to the clinical manifestation of neurodegenerative disease.