Journal of neurotrauma
-
Journal of neurotrauma · Jan 2016
Multicenter StudyCirculating Brain Derived Neurotrophic Factor (BDNF) Has Diagnostic and Prognostic Value in Traumatic Brain Injury.
Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and regeneration. We investigated the diagnostic and prognostic values of serum BDNF in traumatic brain injury (TBI). We examined serum BDNF in two independent cohorts of TBI cases presenting to the emergency departments (EDs) of the Johns Hopkins Hospital (JHH; n = 76) and San Francisco General Hospital (SFGH, n = 80), and a control group of JHH ED patients without TBI (n = 150). ⋯ The addition of GFAP/UCH-L1 to BDNF did not improve outcome prediction significantly. Day-of-injury serum BDNF is associated with TBI diagnosis and also provides 6-month prognostic information regarding recovery from TBI. Thus, day-of-injury BDNF values may aid in TBI risk stratification.
-
Journal of neurotrauma · Jan 2016
Microparticles Impair Hypotensive Cerebrovasodilation and Cause Hippocampal Neuronal Cell Injury after Traumatic Brain Injury.
Endothelin-1 (ET-1), tissue plasminogen activator (tPA), and extracellular signal-regulated kinases-mitogen activated protein kinase (ERK-MAPK) are mediators of impaired cerebral hemodynamics after fluid percussion brain injury (FPI) in piglets. Microparticles (MPs) are released into the circulation from a variety of cells during stress, are pro-thrombotic and pro-inflammatory, and may be lysed with polyethylene glycol telomere B (PEG-TB). We hypothesized that MPs released after traumatic brain injury impair hypotensive cerebrovasodilation and that PEG-TB protects the vascular response via MP lysis, and we investigated the relationship between MPs, tPA, ET-1, and ERK-MAPK in that process. ⋯ PEG-TB-treated animals also showed reduction in neuronal injury in CA1 and CA3 hippocampus, compared with control animals. These results show that serum MP levels are elevated after FPI and lead to impaired hypotensive cerebrovasodilation via over-expression of tPA, ET-1, and ERK-MAPK. Treatment with PEG-TB after injury reduces MP levels and protects hypotensive cerebrovasodilation and limits hippocampal neuronal cell injury.
-
Journal of neurotrauma · Jan 2016
Apolipoprotein E-Mimetic COG1410 Reduces Acute Vasogenic Edema following Traumatic Brain Injury.
The degree of post-traumatic brain edema and dysfunction of the blood-brain barrier (BBB) influences the neurofunctional outcome after a traumatic brain injury (TBI). Previous studies have demonstrated that the administration of apolipoprotein E-mimetic peptide COG1410 reduces the brain water content after subarachnoid hemorrhage, intra-cerebral hemorrhage, and focal brain ischemia. ⋯ The results demonstrated that treatment with COG1410 suppressed the activity of matrix metalloproteinase-9, reduced the disruption of the BBB and Evans Blue dye extravasation, reduced the TBI lesion volume and vasogenic edema, and decreased the functional deficits compared with mice treated with vehicle, at an acute stage after CCI. These findings suggest that COG1410 is a promising preclinical therapeutic agent for the treatment of traumatic brain injury.
-
Journal of neurotrauma · Jan 2016
ReviewThe Role of Thalamic Damage in Mild Traumatic Brain Injury.
There is growing alarm in the United States about an epidemiologically large occurrence of mild traumatic brain injury with serious long lasting consequences. Although conventional imaging has been unable to identify damage capable of explaining its organic origin or discerning patients at risk of developing long-term or permanently disabling neurological impairment, most disease models assume that diffuse axonal injury in white matter must be present but is difficult to resolve. ⋯ This review examines recent proposals that in addition to white matter, the thalamus may be another important further site of injury. Although its possible role still remains largely under-investigated, evidence from experimental human and animal models, as well as simulational and analytical representations of mild head injury and other related conditions, suggest that this strategically vital region of the brain, which has reciprocal projections to the entire cerebral cortex, could feasibly play an important role in understanding pathology and predicting outcome.
-
Journal of neurotrauma · Jan 2016
Multicenter Study Observational StudyAbility of Serum Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and S100B to Differentiate Normal and Abnormal Head Computed Tomography Findings in Patients with Suspected Mild or Moderate Traumatic Brain Injury.
Head computed tomography (CT) imaging is still a commonly obtained diagnostic test for patients with minor head injury despite availability of clinical decision rules to guide imaging use and recommendations to reduce radiation exposure resulting from unnecessary imaging. This prospective multicenter observational study of 251 patients with suspected mild to moderate traumatic brain injury (TBI) evaluated three serum biomarkers' (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1] and S100B measured within 6 h of injury) ability to differentiate CT negative and CT positive findings. Of the 251 patients, 60.2% were male and 225 (89.6%) had a presenting Glasgow Coma Scale score of 15. ⋯ In our patient cohort, UCH-L1 outperformed GFAP and S100B when the goal was to reduce CT use without sacrificing sensitivity. UCH-L1 values <40 pg/mL could potentially have aided in eliminating 83 of the 215 negative CT scans. These results require replication in other studies before the test is used in actual clinical practice.