Journal of neurotrauma
-
Journal of neurotrauma · Mar 2016
ReviewOperation Brain Trauma Therapy: Approach to Modeling, Therapy Evaluation, Drug Selection, and Biomarker Assessments, for a Multi-Center Pre-Clinical Drug Screening Consortium for Acute Therapies in Severe Traumatic Brain Injury.
Traumatic brain injury (TBI) was the signature injury in both the Iraq and Afghan wars and the magnitude of its importance in the civilian setting is finally being recognized. Given the scope of the problem, new therapies are needed across the continuum of care. Few therapies have been shown to be successful. ⋯ To address this possibility and attempt to bring the most promising therapies to clinical trials, we developed Operation Brain Trauma Therapy (OBTT), a multicenter, pre-clinical drug screening consortium for acute therapies in severe TBI. OBTT was developed to include a spectrum of established TBI models at experienced centers and assess the effect of promising therapies on both conventional outcomes and serum biomarker levels. In this review, we outline the approach to TBI modeling, evaluation of therapies, drug selection, and biomarker assessments for OBTT, and provide a framework for reports in this issue on the first five therapies evaluated by the consortium.
-
Journal of neurotrauma · Mar 2016
ReviewSynthesis of Findings, Current Investigations, and Future Directions: Operation Brain Trauma Therapy.
Operation Brain Trauma Therapy (OBTT) is a fully operational, rigorous, and productive multicenter, pre-clinical drug and circulating biomarker screening consortium for the field of traumatic brain injury (TBI). In this article, we synthesize the findings from the first five therapies tested by OBTT and discuss both the current work that is ongoing and potential future directions. Based on the results generated from the first five therapies tested within the exacting approach used by OBTT, four (nicotinamide, erythropoietin, cyclosporine A, and simvastatin) performed below or well below what was expected based on the published literature. ⋯ The sixth and seventh therapies have just completed testing (glibenclamide and Kollidon VA 64), and an eighth drug (AER 271) is in testing. Incorporation of circulating brain injury biomarker assessments into these pre-clinical studies suggests considerable potential for diagnostic and theranostic utility of glial fibrillary acidic protein in pre-clinical studies. Given the failures in clinical translation of therapies in TBI, rigorous multicenter, pre-clinical approaches to therapeutic screening such as OBTT may be important for the ultimate translation of therapies to the human condition.
-
Journal of neurotrauma · Mar 2016
Review Meta AnalysisMethylprednisolone for the treatment of patients with acute spinal cord injuries: A systematic review and meta-analysis.
Previous meta-analyses of methylprednisolone (MPS) for patients with acute traumatic spinal cord injuries (TSCIs) have not addressed confidence in the quality of evidence used for pooled effect estimates, and new primary studies have been recently published. We aimed to determine whether MPS improves motor recovery and is associated with increased risks for adverse events. We searched MEDLINE, EMBASE, and The Cochrane Library, and two reviewers independently screened articles, extracted data, and evaluated risk of bias. ⋯ Observational studies demonstrated a significantly increased risk for gastrointestinal bleeding (nine studies: 2857 participants; RR, 2.18; 95% CI, 1.13-4.19; p = 0.02, very low confidence), but RCTs did not. Pooled evidence does not demonstrate a significant long-term benefit for MPS in patients with acute TSCIs and suggests it may be associated with increased gastrointestinal bleeding. These findings support current guidelines against routine use, but strong recommendations are not warranted because confidence in the effect estimates is limited.
-
Journal of neurotrauma · Mar 2016
ReviewA systematic review of experimental strategies aimed at improving motor function after acute and chronic spinal cord injury.
While various approaches have been proposed in clinical trials aimed at improving motor function after spinal cord injury in humans, there is still limited information regarding the scope, methodological quality, and evidence associated with single-intervention and multi-intervention approaches. A systematic review performed using the PubMed search engine and the key words "spinal cord injury motor recovery" identified 1973 records, of which 39 were selected (18 from the search records and 21 from reference list inspection). Study phase ( clinicaltrials.org criteria) and methodological quality (Cochrane criteria) were assessed. ⋯ Quality appraisal revealed that the percentage of selected studies classified with high risk of bias by Cochrane criteria was as follows: random sequence generation = 64%; allocation concealment = 77%; blinding of participants and personnel = 69%; blinding of outcome assessment = 64%; attrition = 44%; selective reporting = 44%. The current literature contains a high proportion of studies with a limited ability to measure efficacy in a valid manner because of low methodological strength in all items of the Cochrane risk of bias assessment. Recommendations to decrease bias are discussed and include increased methodological rigor in the study design and recruitment of study participants, and the use of electrophysiological and imaging measures that can assess functional integrity of the spinal cord (and may be sufficiently sensitive to detect changes that occur in response to therapeutic interventions).