Journal of neurotrauma
-
Journal of neurotrauma · Apr 2016
Observational StudyRecovery of olfactory function following pediatric traumatic brain injury: A longitudinal follow-up.
There is increasing evidence that disruption of olfactory function after pediatric traumatic brain injury (TBI) is common. Olfactory dysfunction (OD) has been linked to significant functional implications in areas of health, safety, and quality of life, but longitudinal research investigating olfactory recovery is limited. This study aimed to investigate recovery trajectories for olfaction following pediatric TBI and explore predictors of early and late olfactory outcomes. ⋯ Predictors of early (0-3 month) and late (18 month) olfactory outcomes varied with site of impact, a significant predictor of later olfactory performance. In summary, while there was evidence of recovery of OD over time in pediatric TBI, the majority of children with severe OD did not show any recovery. In light of limited recovery of function for more severely affected children, the importance of appropriate education and implementation of rehabilitation management strategies is highlighted.
-
Journal of neurotrauma · Apr 2016
Alterations in Daytime and Nighttime Activity in Piglets after Focal and Diffuse Brain Injury.
We have developed and implemented a noninvasive, objective neurofunctional assessment for evaluating the sustained effects of traumatic brain injury (TBI) in piglets with both diffuse and focal injury types. Derived from commercial actigraphy methods in humans, this assessment continuously monitors the day/night activity of piglets using close-fitting jackets equipped with tri-axial accelerometers to monitor movements of the thorax. ⋯ Compared to shams (N = 6) who acclimated to the animal facility 4 days after an anesthesia experience by blurring the distinction between day and night activity, post-TBI time-matched animals had larger fractions of inactive periods during the daytime than nighttime, and larger fractions of active time in the night were spent in high activity (e.g., constant walking, intermittent running) than during the day. These persistent disturbances in rest and activity are similar to those observed in human adults and children post-TBI, establishing actigraphy as a translational metric, used in both humans and large animals, for assessment of injury severity, progressions, and intervention.
-
Journal of neurotrauma · Apr 2016
Recovery from Mild Traumatic Brain Injury in Previously Healthy Adults.
This prospective longitudinal study reports recovery from mild traumatic brain injury (MTBI) across multiple domains in a carefully selected consecutive sample of 74 previously healthy adults. The patients with MTBI and 40 orthopedic controls (i.e., ankle injuries) completed assessments at 1, 6, and 12 months after injury. Outcome measures included cognition, post-concussion symptoms, depression, traumatic stress, quality of life, satisfaction with life, resilience, and return to work. ⋯ A large percentage of the subgroup who had persistent symptoms had a modifiable psychological risk factor at 1 month (i.e., depression, traumatic stress, and/or low resilience), and at 6 months, they had greater post-concussion symptoms, fatigue, insomnia, traumatic stress, and depression, and worse quality of life. All of the control subjects who had mild post-concussion-like symptoms at 12 months also had a mental health problem (i.e., depression, traumatic stress, or both). This illustrates the importance of providing evidence-supported treatment and rehabilitation services early in the recovery period.
-
Journal of neurotrauma · Apr 2016
Additional Post-Concussion Impact Exposure May Affect Recovery in Adolescent Athletes.
Repeat concussion has been associated with risk for prolonged and pronounced clinical recovery in athletes. In this study of adolescent athletes, we examined whether an additional head impact within 24 h of a sports-related concussion (SRC) is associated with higher symptom burden and prolonged clinical recovery compared with a single-injury group. Forty-two student-athletes (52% male, mean age = 14.9 years) diagnosed with an SRC in a concussion clinic were selected for this study: (1) 21 athletes who sustained an additional significant head impact within 24 h of the initial injury (additional-impact group); (2) 21 single-injury athletes, age and gender matched, who sustained only one discrete concussive blow to the head (single-injury group). ⋯ The additional-impact group also had a significantly longer LOR compared with the single-injury group. These findings provide preliminary, hypothesis-generating evidence for the importance of immediate removal from play following an SRC to protect athletes from re-injury, which may worsen symptoms and prolong recovery. The retrospective study design from a specialized clinical sample points to the need for future prospective studies of the relationship between single- and additional-impact injuries on symptom burden and LOR.
-
Journal of neurotrauma · Apr 2016
Comparative StudyProspective study on non-invasive assessment of ICP in head injured patients: comparison of four methods.
Elevation of intracranial pressure (ICP) may occur in many diseases, and therefore the ability to measure it noninvasively would be useful. Flow velocity signals from transcranial Doppler (TCD) have been used to estimate ICP; however, the relative accuracy of these methods is unclear. This study aimed to compare four previously described TCD-based methods with directly measured ICP in a prospective cohort of traumatic brain-injured patients. ⋯ Considering every TCD recording as an independent event, nICP_BB generally showed to be the best estimator of measured ICP (R = 0.39; p < 0.05; 95% confidence interval [CI] = 9.94 mm Hg; area under the curve [AUC] = 0.66; p < 0.05). For nICP_FVd, although it presented similar correlation coefficient to nICP_BB and marginally better AUC (0.70; p < 0.05), it demonstrated a greater 95% CI for prediction of ICP (14.62 mm Hg). nICP_CrCP presented a moderate correlation coefficient (R = 0.35; p < 0.05) and similar 95% CI to nICP_BB (9.19 mm Hg), but failed to distinguish between normal and raised ICP (AUC = 0.64; p > 0.05). nICP_PI was not related to measured ICP using any of the above statistical indicators. We also introduced a new estimator (nICP_Av) based on the average of three methods (nICP_BB, nICP_FVd, and nICP_CrCP), which overall presented improved statistical indicators (R = 0.47; p < 0.05; 95% CI = 9.17 mm Hg; AUC = 0.73; p < 0.05). nICP_PI appeared to reflect changes in ICP in time most accurately. nICP_BB was the best estimator for ICP "as a number." nICP_Av demonstrated to improve the accuracy of measured ICP estimation.