Journal of neurotrauma
-
Mouse models are unique for studying molecular mechanisms of neurotrauma because of the availability of various genetic modified mouse lines. For spinal cord injury (SCI) research, producing an accurate injury is essential, but it is challenging because of the small size of the mouse cord and the inconsistency of injury production. The Louisville Injury System Apparatus (LISA) impactor has been shown to produce precise contusive SCI in adult rats. ⋯ The cutaneous hyperalgesia threshold was also significantly increased as the injury severity increased. The terminal lesion area and the spared white matter of the injury epicenter were strongly correlated with the injury severities. We conclude that the LISA device, guided by a laser, can produce reliable graded contusive SCIs in mice, resulting in severity-dependent behavioral and histopathological deficits.
-
Journal of neurotrauma · Feb 2019
The Impact of Cervical Spinal Cord Contusion on the Laryngeal Resistance in the Rat.
The present study was designed to investigate laryngeal function responses to chemoreceptor activation after unilateral high-cervical spinal cord contusion in rats. Adult male Sprague-Dawley rats received laminectomy or unilateral contusion at the C2 spinal cord. Both respiratory airflow and subglottal pressure were measured in spontaneously breathing rats at three days, two weeks, or six weeks after spinal surgery. ⋯ These data suggest that cervical spinal cord injury not only influences the breathing pattern, but it also impacts upper airway function through modulation of laryngeal resistance. An attenuated laryngeal closure response may negatively impact the ability to prevent irritant inhalation and maintenance of the functional residual capacity. This may contribute to the provocation of pulmonary disease after cervical spinal cord injury.