Journal of neurotrauma
-
Journal of neurotrauma · Mar 2021
Regionally specific human pre-oligodendrocyte progenitor cells produce both oligodendrocytes and neurons after transplantation in a chronically injured spinal cord rat model after glial scar ablation.
Chronic spinal cord injury (SCI) is a devastating medical condition. In the acute phase after injury, there is cell loss resulting in chronic axonal damage and loss of sensory and motor function including loss of oligodendrocytes that results in demyelination of axons and further dysfunction. In the chronic phase, the inhibitory environment within the lesion including the glial scar can arrest axonal growth and regeneration and can also potentially affect transplanted cells. ⋯ Twelve weeks after cell transplantation, we observed that more of the transplanted cells differentiated into oligodendrocytes when the glial scar was ablated compared with no GSA. Further, we also observed that a higher percentage of transplanted cells differentiated into V2a interneurons and motor neurons in the pre-OPCs only group when compared with GSA+pre-OPCs. This suggests that the local environment created by ablation of the glial scar may have a significant effect on the fate of cells transplanted into the injury site.
-
Journal of neurotrauma · Mar 2021
Relationship between Machine-Learning Image Classification of T2-Weighted Intramedullary Hypointensity on 3 Tesla Magnetic Resonance Imaging and Clinical Outcome in Dogs with Severe Spinal Cord Injury.
Early prognostic information in cases of severe spinal cord injury can aid treatment planning and stratification for clinical trials. Analysis of intraparenchymal signal change on magnetic resonance imaging has been suggested to inform outcome prediction in traumatic spinal cord injury. We hypothesized that intraparenchymal T2-weighted hypointensity would be associated with a lower potential for functional recovery and a higher risk of progressive neurological deterioration in dogs with acute, severe, naturally occurring spinal cord injury. ⋯ An image classification system, based on Speeded-Up Robust Features (SURF), was trained to recognize individual axial T2-weighted slices that contained hypointensity. The presence of such slices in a given transverse series was correlated with a lower chance of functional recovery (odds ratio [OR], 0.08; confidence interval [CI], 0.02-0.38; p < 10-3) and with a higher risk of neurological deterioration (OR, 0.14; 95% CI, 0.05-0.42; p < 10-3). Identification of intraparenchymal T2-weighted hypointensity in severe, naturally occurring spinal cord injury may be assisted by an image classification tool and is correlated with functional recovery.
-
Journal of neurotrauma · Mar 2021
Comparative StudyEffect of Durotomy versus Myelotomy on Tissue Sparing and Functional Outcome after Spinal Cord Injury.
Various surgical strategies have been developed to alleviate elevated intraspinal pressure (ISP) following acute traumatic spinal cord injury (tSCI). Surgical decompression of either the dural (durotomy) or the dural and pial (myelotomy) lining of the spinal cord has been proposed. However, a direct comparison of these two strategies is lacking. ⋯ Interestingly, only durotomy alone resulted in favorable recovery of bladder and Ladder Walk performance. Combined, our data suggest that durotomy plus myelotomy following acute tSCI facilitates tissue sparing and recovery of locomotor function. In the future, biomarkers identifying spinal cord injuries that can benefit from either durotomy alone or durotomy plus myelotomy need to be developed.
-
Journal of neurotrauma · Mar 2021
Correlating tissue mechanics and spinal cord injury: patient-specific finite element models of unilateral cervical contusion spinal cord injury in non-human primates.
Non-human primate (NHP) models are the closest approximation of human spinal cord injury (SCI) available for pre-clinical trials. The NHP models, however, include broader morphological variability that can confound experimental outcomes. We developed subject-specific finite element (FE) models to quantify the relationship between impact mechanics and SCI, including the correlations between FE outcomes and tissue damage. ⋯ Tissue damage thresholds varied for each subject. The generic FE model captured the impact biomechanics in two of the four models; however, the correlations between FE outcomes and tissue damage were weaker than the subject-specific models (gray matter [0.25 < R2 < 0.69] and white matter [R2 < 0.06] except for one subject [0.26 < R2 < 0.48]). The FE mechanical outputs correlated with tissue damage in spinal cord white and gray matters, and the subject-specific models accurately mimicked the biomechanics of NHP cervical contusion impacts.
-
Journal of neurotrauma · Mar 2021
Governor Vessel Electro-Acupuncture Promotes the Intrinsic Growth Ability of Spinal Neurons through Activating Calcitonin Gene-Related Peptide/α-Calcium/Calmodulin-Dependent Protein Kinase/Neurotrophin-3 Pathway after Spinal Cord Injury.
Spinal cord injury (SCI) invariably results in neuronal death and failure of axonal regeneration. This is attributed mainly to the hostile microenvironment and the poor intrinsic regrowth capacity of the injured spinal neurons. We have reported previously that electro-acupuncture on Governor Vessel acupoints (GV-EA) can promote neuronal survival and axonal regeneration of injured spinal cord. ⋯ More importantly, increase in NT-3 promoted the survival, axonal regrowth, and synaptic maintenance of spinal cord neurons in the injured spinal cord. Therefore, it is concluded that increase in NT-3 production is one of the mechanisms by which GV-EA can activate the intrinsic growth ability of spinal neurons after SCI. The experimental results have reinforced the theoretical basis of GV-EA for its clinical efficacy in patients with SCI.