Journal of neurotrauma
-
Journal of neurotrauma · Jun 2021
Randomized Controlled Trial Multicenter StudyCerebrospinal fluid Sulfonylurea Receptor-1 is associated with intracranial pressure and outcome after pediatric TBI-an exploratory analysis of the Cool Kids Trial.
Sulfonylurea receptor-1 (SUR1) is recognized increasingly as a key contributor to cerebral edema, hemorrhage progression, and possibly neuronal death in multiple forms of acute brain injury. SUR1 inhibition may be protective and is actively undergoing evaluation in Phase-2/3 trials of traumatic brain injury (TBI) and stroke. In adult TBI, SUR1 expression is associated with intracranial hypertension and contusion expansion; its role in pediatric TBI remains unexplored. ⋯ Mean CSF SUR1 concentration was associated with ICP and outcome. These findings are distinct from our previous report in adults with severe TBI, where SUR1 was detected universally. SUR1 may be a viable therapeutic target in a subset of pediatric TBI, and further study is warranted.
-
Journal of neurotrauma · Jun 2021
White matter tract-oriented deformation is dependent on real-time axonal fiber orientation.
Traumatic axonal injury (TAI) is a critical public health issue with its pathogenesis remaining largely elusive. Finite element (FE) head models are promising tools to bridge the gap between mechanical insult, localized brain response, and resultant injury. In particular, the FE-derived deformation along the direction of white matter (WM) tracts (i.e., tract-oriented strain) has been shown to be an appropriate predictor for TAI. ⋯ The results revealed that incorporating the real-time fiber orientation not only altered the direction but also amplified the magnitude of the tract-oriented strain, resulting in a generally more extended distribution and a larger volume ratio of WM exposed to high deformation along fiber tracts. These effects were exacerbated with the impact severities characterized by the acceleration magnitudes. Results of this study provide insights into how best to incorporate fiber orientation in head injury models and derive the WM tract-oriented deformation from computational simulations, which is important for furthering our understanding of the underlying mechanisms of TAI.
-
Journal of neurotrauma · Jun 2021
CONCUSSION ACUTELY DECREASES PLASMA GLYCEROPHOSPHOLIPIDS IN ADOLESCENT MALE ATHLETES.
Concussions are frequent in sports and can contribute to significant and long-lasting neurological disability. Adolescents are particularly susceptible to concussions, with accurate determination of the injury challenging. Our previous study demonstrated that concussion diagnoses could be aided by metabolomics profiling and machine learning, with particular weighting on changes in plasma glycerophospholipids (PCs). ⋯ Importantly, combining these four PCs produced an AUC of 0.96 for concussion diagnoses (p < 0.001; 95% confidence interval, 0.89, 1.00). Our data suggest that as few as four circulating PCs may provide excellent diagnostic potential for adolescent concussion. External validation is required in larger cohorts.
-
Journal of neurotrauma · Jun 2021
Development of a blast exposure estimator from a DoD-wide survey study on military service members.
Long-term, repeated exposure to low-intensity blast overpressure is a potential causal factor of lasting outcomes reminiscent of post-concussion syndrome. Wearable blast sensor engineers are exploring elements of blast that are associated with outcomes. Currently, however, there are no devices that can truly record all blasts experienced by an individual. ⋯ If repetitive, low-intensity blast exposure has even a subtle effect over time, operational readiness could be negatively impacted. A threshold of exposure can inform decisions about how to reduce detrimental exposure. The GBEV can be used to track ongoing exposure and potentially identify those who may be at risk for developing blast-related outcomes.
-
Journal of neurotrauma · Jun 2021
Adipose tissue-derived mesenchymal stem cell concentrated conditioned medium alters the expression pattern of glutamate regulatory proteins and aquaporin-4 in the retina after mild traumatic brain injury.
Concentrated conditioned media from adipose tissue-derived mesenchymal stem cells (ASC-CCM) show promise for retinal degenerative diseases. In this study, we hypothesized that ASC-CCM could rescue retinal damage and thereby improve visual function by acting through Müller glia in mild traumatic brain injury (mTBI). Adult C57Bl/6 mice were subjected to a 50-psi air pulse on the left side of the head, resulting in an mTBI. ⋯ Additionally, an increase in aquaporin-4 (AQP4) in Müller cells in blast mice received saline restored to normal levels in blast mice that received ASC-CCM. In vitro studies on rMC-1 Müller glia exposed to 100 ng/mL glutamate or RNA interference knockdown of GLAST expression mimicked the increased Müller cell glial fibrillary acidic protein (a marker of gliosis) seen with mTBI, and suggested that an increase in glutamate and/or a decrease in GLAST might contribute to the Müller cell activation in vivo. Taken together, our data suggest a novel neuroprotective role for ASC-CCM in the rescue of the visual deficits and pathologies of mTBI via restoration of Müller cell health.