Journal of neurotrauma
-
Journal of neurotrauma · Aug 2021
Inflammatory Pre-conditioning of Adipose Derived Stem Cells (ADSCs) with Cerebrospinal Fluid (CSF) from Traumatic Brain Injury Patients Alters the Immunomodulatory Potential of ADSC Secretomes.
Immunomodulation by adipose-tissue-derived stem cells (ADSCs) is of special interest for the alleviation of damaging inflammatory responses in central nervous system injuries. The present study explored the effects of cerebrospinal fluid (CSF) from traumatic brain injury (TBI) patients on this immunomodulatory potential of ADSCs. CSF conditioning of ADSCs increased messenger RNA levels of both pro- and anti-inflammatory genes compared to controls. ⋯ This, moreover, enhanced the phagocytic activity of CD14+ and CD86+ cells, though independently of pre-conditioning. Secretome exposure, finally, also induced a reduction in the percentage of CD192+ adherent cells in cultures of peripheral blood mononuclear cells (PBMCs) from both healthy subjects and TBI patients. This limited efficacy (of both naïve and pre-conditioned secretomes) suggests that the effects of lymphocyte-monocyte paracrine signaling on the fate of cultured PBMCs are strongest upon adherent cell populations.
-
Journal of neurotrauma · Aug 2021
Pharmacological management of Paroxysmal Sympathetic Hyperactivity (PSH): a scoping review.
Paroxysmal sympathetic hyperactivity (PSH) occurs in ∼10% of patients following acute severe brain injury. While PSH is associated with worse outcomes, there are no clinical practice guidelines to inform treatment. We aimed to systematically review the literature on the pharmacological management of PSH. ⋯ The most frequently prescribed agents were benzodiazepines, β-blockers, opioids, α-2 agonists, and baclofen. However, route and dose of drug and subsequent outcome were inconsistently reported, such that no summary was possible. While a wide variety of drugs have been reported to treat PSH, there is a lack of even moderate-quality evidence to inform clinical decision making.
-
Journal of neurotrauma · Aug 2021
Time-course Evaluation of Brain Regional Mitochondrial Bioenergetics in a Preclinical Model of Severe Penetrating Traumatic Brain Injury.
Mitochondrial dysfunction is a pivotal target for neuroprotection strategies for traumatic brain injury (TBI). However, comprehensive time-course evaluations of mitochondrial dysfunction are lacking in the pre-clinical penetrating TBI (PTBI) model. The current study was designed to characterize temporal responses of mitochondrial dysfunction from 30 min to 2 weeks post-injury after PTBI. ⋯ Collectively, PTBI-induced mitochondrial dysfunction responses were time and region specific, evident differentially at the injury core and distant region of PTBI. The current results provide the basis that mitochondrial dysfunction may be targeted differentially based on region specificity post-PTBI. Even more important, these results suggest that therapeutic interventions targeting mitochondrial dysfunction may require extended dosing regimens to achieve clinical efficacy after TBI.
-
Journal of neurotrauma · Aug 2021
ReviewThe Utility of Transcranial Doppler in Moderate and Severe Traumatic Brain Injury: A Narrative Review of Cerebral Physiologic Metrics.
Since its creation in the 1980s, transcranial Doppler (TCD) has provided a method of non-invasively monitoring cerebral physiology and has become an invaluable tool in neurocritical care. In this narrative review, we examine the role TCD has in the management of the moderate and severe traumatic brain injury (TBI) patient. We examine the principles of TCD and the ways in which it has been applied to gain insight into cerebral physiology following TBI, as well as explore the clinical evidence supporting these applications. Its usefulness as a tool to non-invasively determine intracranial pressure, detect post-traumatic vasospasm, predict patient outcome, and assess the state of cerebral autoregulation are all explored.
-
Journal of neurotrauma · Aug 2021
Neuroprotective properties of vitamin C: A Scoping Review of pre-clinical and clinical studies.
There is a need for novel neuroprotective therapies. We aimed to review the evidence for exogenous vitamin C as a neuroprotective agent. MEDLINE, Embase, and Cochrane library databases were searched from inception to May 2020. ⋯ Apart from one case series of intracisternal vitamin C administration in subarachnoid hemorrhage, clinical studies reported no patient-centered benefit. Although pre-clinical trials suggest that exogenous vitamin C improves biomarkers of neuroprotection, functional outcome, and mortality, these results have not translated to humans. However, clinical trials used approximately one tenth of the vitamin C dose of animal studies.