Journal of neurotrauma
-
Journal of neurotrauma · Aug 2021
Local and systemic factors drive ectopic osteogenesis in regenerating muscles of spinal cord-injured mice in a lesion level-dependent manner.
Neuroimmune dysfunction is thought to promote the development of several acute and chronic complications in spinal cord injury (SCI) patients. Putative roles for adrenal stress hormones and catecholamines are increasingly being recognized, yet how these adversely affect peripheral tissue homeostasis and repair under SCI conditions remains elusive. ⋯ This cascade of events is shown to critically involve adrenergic signals and drive the acute release of the neuropeptide, substance P. Our findings generate new insights into the kinetics and processes that govern SCI-induced deregulations in skeletal muscle homeostasis and regeneration, thereby aiding the development of sequential therapeutic strategies that can prevent or attenuate neuromusculoskeletal complications in SCI patients.
-
Journal of neurotrauma · Aug 2021
Intra spinal administration of Netrin-1 promotes locomotor recovery after complete spinal cord transection.
Complete spinal cord lesions interrupt the connection of all axonal projections with their neuronal targets below and above the lesion site. In particular, the interruption of connections with the neurons at lumbar segments after thoracic injuries impairs voluntary body control below the injury. The failure of spontaneous regrowth of transected axons across the lesion prevents the reconnection and reinnervation of the neuronal targets. ⋯ These anatomical findings correlate with a significant recovery of locomotor function. Our work identifies netrin-1 as a biological agent with the capacity to promote the functional repair and recovery of locomotor function after SCI. These findings support the use of netrin-1 as a therapeutic intervention to be tested in humans.
-
Journal of neurotrauma · Aug 2021
Multicenter Study Observational StudyCharacterization of CSF ubiquitin C-terminal hydrolase L1 (UCH-L1) as a biomarker of human acute traumatic spinal cord injury.
A major obstacle for translational research in acute spinal cord injury (SCI) is the lack of biomarkers that can objectively stratify injury severity and predict outcome. Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a neuron-specific enzyme that shows promise as a diagnostic biomarker in traumatic brain injury (TBI), but has not been studied in SCI. In this study, cerebrospinal fluid (CSF) and serum samples were collected over the first 72-96 h post-injury from 32 acute SCI patients who were followed prospectively to determine neurological outcomes at 6 months post-injury. ⋯ Similarly, the failure to gain >8 points on the total motor score at 6 months post-injury was associated with higher 24-h CSF UCH-L1. Unfortunately, serum UCH-L1 levels were not informative about injury severity or outcome. In conclusion, CSF UCH-L1 in acute SCI shows promise as a biomarker to reflect injury severity and predict outcome.
-
Journal of neurotrauma · Aug 2021
Observational StudyNatural Progression of Routine Laboratory Markers following Spinal Trauma: A longitudinal, multi-cohort study.
Our objective was to track and quantify the natural course of serological markers over the 1st year following spinal cord injury. For that purpose, data on serological markers, demographics, and injury characteristics were extracted from medical records of a clinical trial (Sygen) and an ongoing observational cohort study (Murnau study). The primary outcomes were concentration/levels/amount of commonly collected serological markers at multiple time points. ⋯ We conclude that because of trauma-induced physiological perturbations, serological markers undergo marked changes over the course of recovery, from initial pathological levels that normalize within a year. The findings from this study are important, as they provide a benchmark for clinical decision making and prospective clinical trials. All results can be interactively explored on the Haemosurveillance web site (https://jutzelec.shinyapps.io/Haemosurveillance/) and GitHub repository (https://github.com/jutzca/Systemic-effects-of-Spinal-Cord-Injury).
-
Journal of neurotrauma · Aug 2021
Randomized Controlled TrialA Randomized Controlled Trial of Local Delivery of a Rho-Inhibitor (VX-210) in Patients With Acute Traumatic Cervical Spinal Cord Injury.
Acute traumatic spinal cord injury (SCI) can result in severe, lifelong neurological deficits. After SCI, Rho activation contributes to collapse of axonal growth cones, failure of axonal regeneration, and neuronal loss. This randomized, double-blind, placebo-controlled phase 2b/3 study evaluated the efficacy and safety of Rho inhibitor VX-210 (9 mg) in patients after acute traumatic cervical SCI. ⋯ The pre-defined futility stopping rule was met, and the study was therefore ended prematurely. In the final analysis, the primary efficacy end-point was not met, with no statistically significant difference in change from baseline in upper-extremity motor score at 6 months after treatment between the VX-210 (9-mg) and placebo groups. This work opens the door to further improvements in the design and conduct of clinical trials in acute SCI.