Journal of neurotrauma
-
Journal of neurotrauma · Aug 2021
Diaphragm motor evoked potential induced by cervical magnetic stimulation following cervical spinal cord contusion in the rat.
Cervical spinal injury is typically associated with respiratory impairments due to damage to bulbospinal respiratory pathways and phrenic motoneurons. Magnetic stimulation is a non-invasive approach for the evaluation and modulation of the nervous system. The present study was designed to examine whether cervical magnetic stimulation can be applied to evaluate diaphragmatic motor outputs in a pre-clinical rat model of cervical spinal injury. ⋯ However, the threshold of the diaphragmatic motor-evoked potential was reduced, and the amplitude of the diaphragmatic motor-evoked potential was enhanced in response to cervical magnetic stimulation at the acute injury stage. Moreover, the motor-evoked potentials of the bilateral diaphragm in animals with contusions were generally larger when the coil was placed at the left spinal cord at the subchronic and chronic injury stages. These results suggested that cervical magnetic stimulation can be used to examine the excitability of phrenic motor outputs post-injury, and magnetic stimulation applied more laterally may be more effective for triggering diaphragmatic motor-evoked potentials.
-
Journal of neurotrauma · Aug 2021
Multicenter Study Observational StudyCharacterization of CSF ubiquitin C-terminal hydrolase L1 (UCH-L1) as a biomarker of human acute traumatic spinal cord injury.
A major obstacle for translational research in acute spinal cord injury (SCI) is the lack of biomarkers that can objectively stratify injury severity and predict outcome. Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a neuron-specific enzyme that shows promise as a diagnostic biomarker in traumatic brain injury (TBI), but has not been studied in SCI. In this study, cerebrospinal fluid (CSF) and serum samples were collected over the first 72-96 h post-injury from 32 acute SCI patients who were followed prospectively to determine neurological outcomes at 6 months post-injury. ⋯ Similarly, the failure to gain >8 points on the total motor score at 6 months post-injury was associated with higher 24-h CSF UCH-L1. Unfortunately, serum UCH-L1 levels were not informative about injury severity or outcome. In conclusion, CSF UCH-L1 in acute SCI shows promise as a biomarker to reflect injury severity and predict outcome.
-
Journal of neurotrauma · Aug 2021
Comparative StudyCore Temperature Lability Predicts Sympathetic Interruption and Cognitive Performance during Heat Exposure in Persons with Spinal Cord Injuries.
Among persons with high spinal cord injury (Hi-SCI: > T5), changes in core body temperature (Tcore) and cognitive performance during heat exposure appear related to degree of sympathetic interruption. Twenty men with Hi-SCI (C4-T4, American Spinal Injury Association Impairment Scale [AIS] A-B) and 19 matched, able-bodied controls were acclimated to 27°C baseline (BL) before exposure to 35°C heat challenge (HC). Two groups, differentiated by increase in Tcore during HC, were identified: high responders (HR-SCI: ΔTcore ≥0.5°C; n = 13, C4-T2) and low responders (LR-SCI: ΔTcore <0.5°C; n = 7, C4-T4). ⋯ SRavg increased more in the control group (77.0 ± 52.5 nL/cm2/min) than in the HR-SCI group (15.5 ± 22.0 nL/cm2/min; p = 0.001). Only the HR-SCI group had significant increases in T-Scores of Stroop Word (7.5 ± 4.4; p < 0.001), WAIS-IV Digit Span Sequence (1.9 ± 1.8; p = 0.002), and WAIS-IV Digit Span Total (1.4 ± 1.6; p = 0.008). Persons with SCI who responded to HC with a greater change in Tcore demonstrated evidence of greater sympathetic interruption and had an associated improvement in cognitive performance.
-
Journal of neurotrauma · Aug 2021
Numerical models of spinal cord trauma: The effect of cerebrospinal fluid pressure and epidural fat on the results.
Spinal cord injury (SCI) is commonly caused by traumatic mechanical damage. Although numerical models can help predict the mechanics of SCI without putting the subjects in danger, previous studies did not focus on alternations in cerebrospinal fluid (CSF) pressure and did not account for the presence of epidural fat. This study aims to numerically compare the mechanical behavior of the human spine when subjected to contusion and burst fracture with varying CSF pressure, either normal or elevated pressure that represents intracranial hypertension. ⋯ The comparison of the CSF pressures demonstrated that SCI in patients with elevated pressure and in regions where insufficient epidural fat exists might lead to higher spinal cord stresses. Yet, in regions with enough fat, the fat can absorb energy and counteract the effect of the elevated pressure. These results indicate important aspects that need to be accounted for in future numerical models of SCI while also demonstrating how the injury might be aggravated by preexisting conditions.
-
Journal of neurotrauma · Aug 2021
Intra spinal administration of Netrin-1 promotes locomotor recovery after complete spinal cord transection.
Complete spinal cord lesions interrupt the connection of all axonal projections with their neuronal targets below and above the lesion site. In particular, the interruption of connections with the neurons at lumbar segments after thoracic injuries impairs voluntary body control below the injury. The failure of spontaneous regrowth of transected axons across the lesion prevents the reconnection and reinnervation of the neuronal targets. ⋯ These anatomical findings correlate with a significant recovery of locomotor function. Our work identifies netrin-1 as a biological agent with the capacity to promote the functional repair and recovery of locomotor function after SCI. These findings support the use of netrin-1 as a therapeutic intervention to be tested in humans.