Journal of neurotrauma
-
Journal of neurotrauma · Aug 2024
Lesion Frequency Distribution Maps of Traumatic Axonal Injury on Early Magnetic Resonance Imaging after Moderate and Severe Traumatic Brain Injury and Associations to 12 Months Outcome.
Traumatic axonal injury (TAI) is a common finding on magnetic resonance imaging (MRI) in patients with moderate-severe traumatic brain injury (TBI), and the burden of TAI is associated with outcome in this patient group. Lesion mapping offers a way to combine imaging findings from numerous individual patients into common lesion maps where the findings from a whole patient cohort can be assessed. The aim of this study was to evaluate the spatial distribution of TAI lesions on different MRI sequences and its associations to outcome with use of lesion mapping. ⋯ On VLSM, poor outcome was associated with TAI lesions bilaterally in the splenium, the right side of tectum, tegmental mesencephalon, and pons. In conclusion, we found higher frequency of TAI in posterior corpus callosum, and TAI in splenium, mesencephalon, and pons were associated with poor outcome. If lesion frequency distribution maps containing outcome information based on imaging findings from numerous patients in the future can be compared with the imaging findings from individual patients, it would offer a new tool in the clinical workup and outcome prediction of the patient with TBI.
-
Journal of neurotrauma · Aug 2024
Meningeal damage and interface astroglial scarring in the rat brain exposed to a laser-induced shock wave(s).
In the past decade, signature clinical neuropathology of blast-induced traumatic brain injury has been under intense debate, but interface astroglial scarring (IAS) seems to be convincing. In this study, we examined whether IAS could be replicated in the rat brain exposed to a laser-induced shock wave(s) (LISW[s]), a tool that can produce a pure shock wave (primary mechanism) without dynamic pressure (tertiary mechanism). Under certain conditions, we observed astroglial scarring in the subpial glial plate (SGP), gray-white matter junctions (GM-WM), ventricular wall (VW), and regions surrounding cortical blood vessels, accurately reproducing clinical IAS. ⋯ With the high-impulse single exposure or the multiple exposure (low impulse), fibrotic reaction or fibrotic scar formation was observed, in addition to astroglial scarring, in the cortical surface region. Although there are some limitations, this seems to be the first report on the shock-wave-induced IAS rodent model. The model may be useful to explore potential therapeutic approaches for IAS.
-
Journal of neurotrauma · Aug 2024
Neuroinflammation Plays a Potential Role in the Medulla Oblongata after Moderate Traumatic Brain Injury in Mice as Revealed by Nontargeted Metabonomics Analysis.
Moderate traumatic brain injury (mTBI) involves a series of complex pathophysiological processes in not only the area in direct contact with mechanical violence but also in other brain regions far from the injury site, which may be important factors influencing subsequent neurological dysfunction or death. The medulla oblongata (MO) is a key area for the maintenance of basic respiratory and circulatory functions, whereas the pathophysiological processes after mTBI have rarely drawn the attention of researchers. In this study, we established a closed-head cortical contusion injury model, identified 6 different time points that covered the acute, subacute, and chronic phases, and then used nontargeted metabolomics to identify and analyze the changes in differential metabolites (DMs) and metabolic pathways in the MO region. ⋯ Choline and glycerophospholipid metabolism was identified as the key pathway related to the changes in MO metabolism at different phases. In addition, we confirmed increases in the levels of inflammatory factors and the activation of astrocytes and microglia by Western blot and immunofluorescence staining, and these findings were consistent with the nontargeted metabolomic results. These findings suggest that neuroinflammation plays a central role in MO neuropathology after mTBI and provide new insights into the complex pathophysiologic mechanisms involved after mTBI.
-
Journal of neurotrauma · Aug 2024
ReviewSleep after Concussion: A Scoping Review of Sensor Technologies.
Sleep disturbances following a concussion/mild traumatic brain injury are associated with longer recovery times and more comorbidities. Sensor technologies can directly monitor sleep-related physiology and provide objective sleep metrics. This scoping review determines how sensor technologies are currently used to monitor sleep following a concussion. ⋯ Sleep sensing technologies may be used to identify how sleep affects concussion recovery. However, high variability in sensor deployment methodologies makes cross-study comparisons difficult and highlights the need for standardization. Consensus on how sleep sensing technologies are used post-concussion may lead to clinical integration with subjective methods for improved sleep monitoring during the recovery period.
-
Journal of neurotrauma · Aug 2024
Detecting and Predicting Cognitive Decline in Individuals with Traumatic Brain Injury: A Longitudinal Telephone-Based Study.
Traumatic brain injuries (TBIs) can lead to long-lasting cognitive impairments, and some survivors experience cognitive decline post-recovery. Early detection of decline is important for care planning, and understanding risk factors for decline can elucidate targets for prevention. While neuropsychological testing is the gold standard approach to characterizing cognitive function, there is a need for brief, scalable tools that are capable of detecting clinically significant changes in post-TBI cognition. ⋯ Thus, the BTACT may be useful in surveillance efforts aimed at understanding and detecting decline, particularly in situations where in-person cognitive screening is impractical or unfeasible. We also identified potentially modifiable targets for the prevention of post-TBI cognitive decline. These findings can offer insights into treatment goals and preventive strategies for individuals at risk for cognitive decline, as well as help to facilitate early identification efforts.