Journal of neurotrauma
-
Journal of neurotrauma · Aug 2024
Distinct Serum GFAP and Nf-L Time-Courses after Rapid Head Rotations.
Traumatic brain injury (TBI) causes significant neurophysiological deficits and is typically associated with rapid head accelerations common in sports-related incidents and automobile accidents. There are over 1.5 million TBIs in the United States each year, with children aged 0-4 being particularly vulnerable. TBI diagnosis is currently achieved through interpretation of clinical signs and symptoms and neuroimaging; however, there is increasing interest in minimally invasive fluid biomarkers to detect TBI objectively across all ages. ⋯ Sex differences were observed but inconsistent. Serum GFAP and Nf-L levels had distinct time-courses following head rotations in piglets, and both corresponded to load exposure. We conclude that serum GFAP and Nf-L offer promise for early TBI diagnosis and intervention decisions for TBI and other neurological trauma.
-
Journal of neurotrauma · Jul 2024
A Transdiagnostic, Hierarchical Taxonomy of Psychopathology Following Traumatic Brain Injury (HiTOP-TBI).
Psychopathology, including depression, anxiety, and post-traumatic stress, is a significant yet inadequately addressed feature of moderate-severe traumatic brain injury (TBI). Progress in understanding and treating post-TBI psychopathology may be hindered by limitations associated with conventional diagnostic approaches, specifically the Diagnostic and Statistical Manual of Mental Disorders (DSM) and International Classification of Diseases (ICD). The Hierarchical Taxonomy of Psychopathology (HiTOP) offers a promising, transdiagnostic alternative to psychiatric classification that may more effectively capture the experiences of individuals with TBI. ⋯ The empirical structure of psychopathology after TBI largely aligned with the established HiTOP model (e.g., a detachment spectrum). However, these constructs need to be interpreted in relation to the unique experiences associated with TBI (e.g., considering the injury's impact on the person's social functioning). By overcoming the limitations of conventional diagnostic approaches, the HiTOP-TBI model has the potential to accelerate our understanding of the causes, correlates, consequences, and treatment of psychopathology after TBI.
-
Journal of neurotrauma · Jul 2024
Evaluating and Updating the IMPACT Model to Predict Outcomes in Two Contemporary North American Traumatic Brain Injury Cohorts.
The International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) model is a widely recognized prognostic model applied after traumatic brain injury (TBI). However, it was developed with patient cohorts that may not reflect modern practice patterns in North America. We analyzed data from two sources: the placebo arm of the phase II double-blinded, multicenter, randomized controlled trial Prehospital Tranexamic Acid for TBI (TXA) cohort and an observational cohort with similar inclusion/exclusion criteria (Predictors of Low-risk Phenotypes after Traumatic Brain Injury Incorporating Proteomic Biomarker Signatures [PROTIPS] cohort). ⋯ The closed testing procedure using likelihood ratio tests consistently identified the coefficient update model as superior, outperforming the original and recalibrated models across all cohorts. In our comprehensive evaluation of the IMPACT model, the coefficient updated models were the best performing across all cohorts through a structured closed testing procedure. Thus, standardization of model updating procedures is needed to reproducibly determine the best performing versions of IMPACT that reflect the specific characteristics of a dataset.