Journal of neurotrauma
-
Journal of neurotrauma · Jul 2024
Multicenter Study Observational StudyEvaluation of GFAP and UCH-L1 using a rapid point of care test for predicting head computed tomography lesions after mild traumatic brain injury in a Dutch multicenter cohort.
Mild traumatic brain injury (mTBI) is a common condition seen in emergency departments worldwide. Blood-based biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) are recently U. S. ⋯ This study confirmed high sensitivity of GFAP and UCH-L1 for CT abnormalities in mTBI patients using the i-STAT TBI test. The results support the potential use of GFAP and UCH-L1 as tools for determining the indication for CT scanning in mTBI patients, possibly offering a cost- and time-effective approach to management of patients with mTBI. Prospective studies in larger cohorts are warranted to validate our findings.
-
Journal of neurotrauma · Jul 2024
Perivascular space burden and cerebrospinal fluid biomarkers in U.S. Veterans with blast-related mild traumatic brain injury.
Blast-related mild traumatic brain injury (mTBI) is recognized as the "signature injury" of the Iraq and Afghanistan wars. Sleep disruption, mTBI, and neuroinflammation have been individually linked to cerebral perivascular space (PVS) dilatation. Dilated PVSs are putative markers of impaired cerebrospinal fluid (CSF) and interstitial fluid exchange, which plays an important role in removing cerebral waste. ⋯ After controlling for sleep time and symptoms of post-traumatic stress disorder, temporal MV-PVS burden remained significantly associated with higher CSF markers of inflammation in the blast-mTBI group only. These data support an association between central, rather than peripheral, neuroinflammation and MV-PVS burden in Veterans with blast-mTBI independent of sleep. Future studies should continue to explore the role of blast-mTBI related central inflammation in MV-PVS development, as well as investigate the impact of subclinical exposures on MV-PVS burden.
-
Journal of neurotrauma · Jul 2024
Injuries in fatalities of dismounted blast: identification of four mechanisms of head and spine injury.
Blast is the most common injury mechanism in conflicts of this century due to the widespread use of explosives, confirmed by recent conflicts such as in Ukraine. Data from conflicts in the last century such as Northern Ireland, the Falklands, and Vietnam up to the present day show that between 16% and 21% of personnel suffered a traumatic brain injury. Typical features of fatal brain injury to those outside of a vehicle (hereafter referred to as dismounted) due to blast include the presence of hemorrhagic brain injury alongside skull fractures rather than isolated penetrating injuries more typical of traditional ballistic head injuries. ⋯ These identified injury patterns can now be investigated to consider injury mechanisms and so develop mitigation strategies or clinical treatments. Level of Evidence: Observational. Study type: cohort observational.
-
Neurovascular coupling (NVC) uniquely describes cerebrovascular response to neural activation and has demonstrated impairments following concussion in adult patients. It is currently unclear how adolescent patients experience impaired NVC acutely following concussion during this dynamic phase of physiological development. The purpose of this study was to investigate NVC in acutely concussed adolescent patients relative to controls. ⋯ The NVC response to the visual search task was 7.1% higher than the response to reading in concussion patients relative to being 5.5% higher in controls. Our data indicate that concussed patients present with a significantly greater response to more difficult tasks than do controls, suggesting that concussed adolescents require increased neural resource allocation as task difficulty increases. The study provides insight into the neurophysiological consequences of concussion in adolescent patients.
-
Journal of neurotrauma · Jul 2024
Characterizing diffusion from microdialysis catheters in the human brain: a magnetic resonance imaging study with gadobutrol.
Cerebral microdialysis (CMD) catheters allow continuous monitoring of patients' cerebral metabolism in severe traumatic brain injury (TBI). The catheters consist of a terminal semi-permeable membrane that is inserted into the brain's interstitium to allow perfusion fluid to equalize with the surrounding cerebral extracellular environment before being recovered through a central non-porous channel. However, it is unclear how far recovered fluid and suspended metabolites have diffused from within the brain, and therefore what volume or region of brain tissue the analyses of metabolism represent. ⋯ Cerebral microdialysis allows continuous monitoring of regional cerebral metabolism-the volume of which is now clearer from this study. It also has the potential to deliver small molecule therapies to focal pathologies of the human brain. This study provides a platform for future development of new catheters optimally designed to treat such conditions.