Journal of neurotrauma
-
Journal of neurotrauma · Oct 2018
Remote Changes in Cortical Excitability after Experimental Traumatic Brain Injury and Functional Reorganization.
Although cognitive and behavioral deficits are well known to occur following traumatic brain injury (TBI), motor deficits that occur even after mild trauma are far less known, yet are equally persistent. This study was aimed at making progress toward determining how the brain reorganizes in response to TBI. We used the adult rat controlled cortical impact injury model to study the ipsilesional forelimb map evoked by electrical stimulation of the affected limb, as well as the contralesional forelimb map evoked by stimulation of the unaffected limb, both before injury and at 1, 2, 3, and 4 weeks after using functional magnetic resonance imaging (fMRI). ⋯ The contralesional changes also were indicated by reduced SEP latency within 3 days after injury, but not by blood oxygenation level-dependent fMRI until much later. Detailed interrogation of cortical excitability using paired-pulse electrophysiology showed that the contralesional cortex undergoes both an early and a late post-injury period of hyper-excitability in response to injury, interspersed by a period of relatively normal activity. From these data, we postulate a cross-hemispheric mechanism by which remote cortex excitability inhibits ipsilesional activation by rebalanced cortical excitation-inhibition.
-
Journal of neurotrauma · Oct 2018
Short-Term Impact of Concussion in the NHL: An Analysis of Player Longevity, Performance, and Financial Loss.
Many studies have focused on the long-term impact of concussions in professional sports, but few have investigated short-term effects. This study examines concussion effects on individual players in the National Hockey League (NHL) by assessing career length, performance, and salary. Contracts, transactions, injury reports, and performance statistics from 2008-17 were obtained from the official NHL online publication. ⋯ Players scored 2.5 points/year less following a concussion. The total annualized financial impact from salary reductions after 1 concussion was $57.0 million, with a decrease of $292,000 per year in contract value per athlete. This retrospective study demonstrates that NHL concussions resulting in injury protocol activation lead to shorter career lengths, earnings reductions, and decreased performance when compared with non-concussed controls.
-
Journal of neurotrauma · Oct 2018
Dietary Zinc Modulates Matrix Metalloproteinases in Traumatic Brain Injury.
Animal models of mild traumatic brain injury (mTBI) provide opportunity to examine the extent to which dietary interventions can be used to improve recovery after injury. Animal studies also suggest that matrix metalloproteinases (MMPs) play a role in tissue remodeling post-TBI. Because dietary zinc (Zn) improved recovery in nonblast mTBI models, and the MMPs are Zn-requiring enzymes, we evaluated the effects of low- (LoZn) and adequate-Zn (AdZn) diets on MMP expression and behavioral responses, subsequent to exposure to a single blast. ⋯ Because the blast injuries occurred while animals were under general anesthesia, the increased immobility observed post-injury in rats consuming LoZn diets suggest that blast mTBI can, in the absence of any psychological stressor, induce post-traumatic stress disorder-related traits that are chronic, but responsive to diet. Taken together, our results support a relationship between marginally Zn-deficient status and a compromised regenerative response post-injury in muscle, likely through the MMP pathway. However, in neuronal tissue, changes in MMP/TIMP levels after blast indicate a variable response to marginally Zn-deficient diets that may help explain compromised repair mechanism(s) previously associated with the systemic hypozincemia that develops in patients with TBI.
-
Journal of neurotrauma · Oct 2018
Randomized Controlled Trial Multicenter StudyAmantadine Did Not Positively Impact Cognition in Chronic Traumatic Brain Injury: A Multi-site, Randomized, Controlled Trial.
Despite limited evidence to support the use of amantadine to enhance cognitive function after traumatic brain injury (TBI), the clinical use for this purpose is highly prevalent and is often based on inferred belief systems. The aim of this study was to assess effect of amantadine on cognition among individuals with a history of TBI and behavioral disturbance using a parallel-group, randomized, double-blind, placebo-controlled trial of amantadine 100 mg twice-daily versus placebo for 60 days. Included in the study were 119 individuals with two or more neuropsychological measures greater than 1 standard deviation below normative means from a larger study of 168 individuals with chronic TBI (>6 months post-injury) and irritability. ⋯ In the first 28 days of use, amantadine may impede cognitive processing. However, the effect size was small and mean scores for both groups were generally within expectations for persons with history of complicated mild-to-severe TBI, suggesting that changes observed across assessments may not have functional significance. The use of amantadine to enhance cognitive function is not supported by these findings.
-
Journal of neurotrauma · Oct 2018
Vascular Abnormalities within Normal Appearing Tissue in Chronic Traumatic Brain Injury.
Magnetic resonance imaging (MRI) is a powerful tool for visualizing traumatic brain injury(TBI)-related lesions. Trauma-induced encephalomalacia is frequently identified by its hyperintense appearance on fluid-attenuated inversion recovery (FLAIR) sequences. In addition to parenchymal lesions, TBI commonly results in cerebral microvascular injury, but its anatomical relationship to parenchymal encephalomalacia is not well characterized. ⋯ In normal-appearing brain regions, only CVR was significantly reduced relative to controls (p < 0.05). These findings indicate that vascular dysfunction represents a TBI endophenotype that is distinct from structural injury detected using conventional MRI, may be present even in the absence of visible structural injury, and persists long after trauma. CVR may serve as a useful diagnostic and pharmacodynamic imaging biomarker of traumatic microvascular injury.