Journal of neurotrauma
-
Traumatic brain injury (TBI) is one of the leading causes of disability and mortality worldwide. The TBI pathogenesis can induce broad pathophysiological consequences and clinical outcomes attributed to the complexity of the brain. Thus, the diagnosis and prognosis are important issues for the management of mild, moderate, and severe forms of TBI. ⋯ Metabolic biomarkers can also be used for the prediction of outcome, monitoring treatment response, in the assessment of or prognosis of post-injury recovery, and potentially in the use of neuroplasticity procedures. Metabolomics can also enhance our understanding of the pathophysiological mechanisms of TBI, both in primary and secondary injury. Thus, this review presents the promising application of metabolomics for the assessment of TBI as a stand-alone platform or in association with proteomics in the clinical setting.
-
Journal of neurotrauma · Aug 2018
Transactive response DNA-binding protein 43 (TDP-43) abnormalities after traumatic brain injury.
Initial studies have found some evidence for transactive response DNA-binding protein 43 (TDP-43) abnormalities after traumatic brain injury (TBI), and the presence of protein inclusions consisting of TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis (ALS), a condition associated with TBI. However, no study has characterized changes in TDP-43 phosphorylation, mislocalization, and fragmentation (i.e., abnormalities linked to hallmark TDP-43 pathology) after TBI, and how these relate to functional outcomes. Further, how TBI affects an individual with a known predisposition to TDP-43 pathology is unknown. ⋯ In the human TBI patients, the only significant finding was increased nuclear accumulation of phosphorylated TDP-43 fragments. The discrepancy between the robust mouse findings and the largely non-significant human findings may be due to factors including heterogeneity in clinical TBI, the small group sizes, and temporal complexities with TDP-43 abnormalities. These findings indicate that TBI can induce a number of TDP-43 abnormalities that may contribute to the neurological consequences of TBI, though further research is still needed.
-
Journal of neurotrauma · Aug 2018
Preinjury Migraine History as a Risk Factor for Prolonged Return to School and Sports following Concussion.
Having a preexisting migraine disorder might be a risk factor for a prolonged recovery following a sport-related concussion. We examined whether having a migraine history was associated with a prolonged return to academics and athletics following a concussion. High school and collegiate athletes (n = 1265; 42% female) who sustained a sport-related concussion were monitored by athletic trainers using a web-based surveillance system that collects information about concussion recovery. ⋯ Stratifying the analyses by sex showed that this effect was significant in girls and women with preexisting migraines, but not boys and men with preexisting migraines. There were no group differences in recovery rates when examining return to athletics. Athletes with a preinjury migraine history may be at an elevated risk for a protracted return to school after concussion, especially girls and women.
-
Journal of neurotrauma · Aug 2018
Differential Adaptations of the Musculoskeletal System after Spinal Cord Contusion and Transection in Rats.
Spinal cord injury (SCI) causes impaired neuronal function with associated deficits in the musculoskeletal system, which can lead to permanent disability. Here, the impact of SCI on in vivo musculoskeletal adaptation was determined by studying deficits in locomotor function and analyzing changes that occur in the muscle and bone compartments within the rat hindlimb after contusion or transection SCI. Analyses of locomotor patterns, as assessed via the Basso, Beattie, and Bresnahan (BBB) rating scale, revealed that transection animals showed significant deficits, while the contusion group had moderate deficits, compared with naïve groups. ⋯ In general, values of bone volume per total bone volume (BV/TV) were similar across the SCI groups. Significant decreases were observed, however, in the transection animals for bone mineral content, bone mineral density, and three-dimensional trabecular structure parameters (trabecular number, thickness, and spacing) compared with the naïve and contusion groups. Together, these findings suggest an altered musculoskeletal system can be correlated directly to motor dysfunctions seen after SCI.
-
Journal of neurotrauma · Aug 2018
The Role of Ventral Tegmental Area Gamma-Aminobutyric Acid in Chronic Neuropathic Pain after Spinal Cord Injury in Rats.
Spinal cord injury (SCI) frequently results in chronic neuropathic pain (CNP). However, the understanding of brain neural circuits in CNP modulation is unclear. The present study examined the changes of ventral tegmental area (VTA) putative GABAergic and dopaminergic neuronal activity with CNP attenuation in rats. ⋯ With regard to in vivo electrophysiology, VTA putative GABAergic neuronal activity (13.6 ± 1.7 spikes/sec) and putative dopaminergic neuronal activity (2.4 ± 0.8 spikes/sec) were increased and decreased, respectively, in the SCI group compared to the sham control group. These neuronal activities were reversed by i.v. administration of morphine. The present study suggests that chronic increase of GABAergic neuronal activity suppresses dopaminergic neuronal activity in the VTA and is responsible for negative emotion and motivation for attenuation of SCI-induced CNP.