Journal of neurotrauma
-
Journal of neurotrauma · Jun 2018
Comparative StudyA Direct Comparison between Norepinephrine and Phenylephrine for Augmenting Spinal Cord Perfusion in a Porcine Model of Spinal Cord Injury.
Current clinical guidelines recommend elevating the mean arterial blood pressure (MAP) to increase spinal cord perfusion in patients with acute spinal cord injury (SCI). This is typically achieved with vasopressors such as norepinephrine (NE) and phenylephrine (PE). These drugs differ in their pharmacological properties and potentially have different effects on spinal cord blood flow (SCBF), oxygenation (PO2), and downstream metabolism after injury. ⋯ However, both NE and PE were associated with a gradual decrease in the lactate to pyruvate (L/P) ratio after decompression. PE was associated with greater hemorrhage through the injury site than that in control animals. Combined, our results suggest that NE promotes better restoration of blood flow and oxygenation than PE in the traumatically injured spinal cord, thus providing a physiological rationale for selecting NE over PE in the hemodynamic management of acute SCI.
-
Journal of neurotrauma · Jun 2018
Prophylactic Riluzole Attenuates Oxidative Stress Damage in Spinal Cord Distraction.
Spinal cord injury (SCI) without radiographical abnormalities (SCIWORA) presents a significant challenge because of the loss of function despite an apparent normal anatomy. The cause of dysfunction is not understood, and specific treatment options are lacking. Some scoliosis corrective surgeries result in SCIWORA, where stretching of the spinal cord can lead to vascular compromise and hypoxia. ⋯ However, in contrast to the oxidative stress and metabolic impairments observed in vehicle-treated distraction animals, in which protein carbonylation increased significantly (5.88 ± 1.3 nmol/mL), riluzole kept these levels within the normal range (1.8 ± 1.0 nmol/mL). This neurprotection also prevented ventral motor neuron hypoplasia and pyknosis, characteristic features of this atraumatic SCI model, and maintained normal gait function (e.g., stride length and stance time). This study provides evidence for the use of prophylactic neuroprotective strategies in which thoracic or spine surgeries present the risk of causing atraumatic SCI.
-
Journal of neurotrauma · Jun 2018
Survival Analysis-Based Human Head Injury Risk Curves: Focus on Skull Fracture.
Head contact-induced loads can result in skull fractures and/or brain injuries. While skull fractures have been produced from post-mortem human cadaver surrogates (PMHS), injury probability curves describing their structural responses have not been developed. The objectives of this study were to develop skull fracture-based injury risk curves and describe human tolerances using survival analysis. ⋯ Tightness-of-fit of risk curves for failure force, energy, and deflection were better than linear and secant stiffness variables. Force best represented skull fracture response based on BSM and NCIS, followed by deflection and energy, while two stiffness variables were least preferred metrics. These structural response-based set of risk curves, hitherto not reported, form a fundamental dataset for validating/assessing accuracy of outputs from computational models and serve as hierarchical skull fracture injury criteria under head contact loads.
-
Journal of neurotrauma · Jun 2018
Continuous Infusion of Phenelzine, Cyclosporine A, or Their Combination: Evaluation of Mitochondrial Bioenergetics, Oxidative Damage, and Cytoskeletal Degradation following Severe Controlled Cortical Impact Traumatic Brain Injury in Rats.
To date, all monotherapy clinical traumatic brain injury (TBI) trials have failed, and there are currently no Food and Drug Administration (FDA)-approved pharmacotherapies for the acute treatment of severe TBI. Due to the complex secondary injury cascade following injury, there is a need to develop multi-mechanistic combinational neuroprotective approaches for the treatment of acute TBI. As central mediators of the TBI secondary injury cascade, both mitochondria and lipid peroxidation-derived aldehydes make promising therapeutic targets. ⋯ Additionally, as the first 72 h represents a critical time period following injury, it follows that continuous drug infusion over the first 72 h following injury may also lead to optimal neuroprotective effects. This is the first study to examine the effects of a 72 h subcutaneous continuous infusion of PZ, CsA, and the combination of these two agents on mitochondrial respiration, mitochondrial bound 4-hydroxynonenal (4-HNE), and acrolein, and α-spectrin degradation 72 h following a severe controlled cortical impact injury in rats. Our results indicate that individually, both CsA and PZ are able to attenuate mitochondrial 4-HNE and acrolein, PZ is able to maintain mitochondrial respiratory control ratio and cytoskeletal integrity but together, PZ and CsA are unable to maintain neuroprotective effects.
-
Journal of neurotrauma · Jun 2018
Clinical TrialMild Jugular Compression Collar Ameliorated Changes in Brain Activation of Working Memory after One Soccer Season in Female High School Athletes.
Recent neuroimaging studies have suggested that repetitive subconcussive head impacts, even after only one sport season, may lead to pre- to post-season structural and functional alterations in male high school football athletes. However, data on female athletes are limited. In the current investigation, we aimed to (1) assess the longitudinal pre- to post-season changes in functional MRI (fMRI) of working memory and working memory performance, (2) quantify the association between the pre- to post-season change in fMRI of working memory and the exposure to head impact and working memory performance, and (3) assess whether wearing a neck collar designed to reduce intracranial slosh via mild compression of the jugular veins can ameliorate the changes in fMRI brain activation observed in the female high school athletes who did not wear collars after a full soccer season. ⋯ A significant pre- to post-season increase in fMRI blood oxygen level dependent (BOLD) signal was demonstrated when performing the N-back working memory task in the non-collar group but not in the collar group, despite the comparable exposure to head impacts during the season between the two groups. The collar group demonstrated significantly smaller pre- to post-season change in fMRI BOLD signal than the non-collar group, suggesting a potential protective effect from the collar device. Significant correlations were also found between the pre- to post-season increase in fMRI brain activation and the decrease in task accuracy in the non-collar group, indicating an association between the compensatory mechanism in underlying neurophysiology and the alteration in the behavioral outcomes.