Journal of neurotrauma
-
Journal of neurotrauma · Jan 2018
Randomized Controlled Trial Multicenter StudyA Method of Managing Severe Traumatic Brain Injury in the Absence of Intracranial Pressure Monitoring: the ICE Protocol.
The imaging and clinical examination (ICE) algorithm used in the Benchmark Evidence from South American Trials: Treatment of Intracranial Pressure (BEST TRIP) randomized controlled trial is the only prospectively investigated clinical protocol for traumatic brain injury management without intracranial pressure (ICP) monitoring. As the default literature standard, it warrants careful evaluation. We present the ICE protocol in detail and analyze the demographics, outcome, treatment intensity, frequency of intervention usage, and related adverse events in the ICE-protocol cohort. ⋯ Adverse event incidence was low and comparable to the BEST TRIP monitored group. Although this protocol should produce similar/acceptable results under circumstances comparable to those in the trial, influences such as longer pre-hospital times and non-specialist transport personnel, plus an intensive care unit model of aggressive physician-intensive care by small groups of neurotrauma-focused intensivists, which differs from most high-resource models, support caution in expecting the same results in dissimilar settings. Finally, this protocol's ICP-titration approach to suspected intracranial hypertension (vs. crisis management for monitored ICP) warrants further study.
-
Journal of neurotrauma · Jan 2018
Multicenter Study Clinical TrialA brain electrical activity (EEG) based biomarker of functional impairment in traumatic head injury: a multisite validation trial.
The potential clinical utility of a novel quantitative electroencephalographic (EEG)-based Brain Function Index (BFI) as a measure of the presence and severity of functional brain injury was studied as part of an independent prospective validation trial. The BFI was derived using quantitative EEG (QEEG) features associated with functional brain impairment reflecting current consensus on the physiology of concussive injury. Seven hundred and twenty adult patients (18-85 years of age) evaluated within 72 h of sustaining a closed head injury were enrolled at 11 U. ⋯ Regression slopes of the odds ratios for likelihood of group membership suggest a relationship between the BFI and severity of impairment. Findings support the BFI as a quantitative marker of brain function impairment, which scaled with severity of functional impairment in mTBI patients. When integrated into the clinical assessment, the BFI has the potential to aid in early diagnosis and thereby potential to impact the sequelae of TBI by providing an objective marker that is available at the point of care, hand-held, non-invasive, and rapid to obtain.
-
Journal of neurotrauma · Jan 2018
Overlapping microRNA expression in saliva and cerebrospinal fluid accurately identifies pediatric traumatic brain injury.
To assess the accuracy and physiological relevance of circulating microRNA (miRNA) as a biomarker of pediatric concussion, we compared changes in salivary miRNA and cerebrospinal fluid (CSF) miRNA concentrations after childhood traumatic brain injury (TBI). A case-cohort design was used to compare longitudinal miRNA concentrations in CSF of seven children with severe TBI against three controls without TBI. The miRNAs "altered" in CSF were interrogated in saliva of 60 children with mild TBI and compared with 18 age- and sex-matched controls. ⋯ Concentrations of miR-320c were directly correlated with child and parent reports of attention difficulty. Salivary miRNA represents an easily measured, physiologically relevant, and accurate potential biomarker for TBI. Further studies assessing the influence of orthopedic injury and exercise on peripheral miRNA patterns are needed.
-
Journal of neurotrauma · Jan 2018
Role of Caspase-3-mediated Apoptosis in Chronic Caspase-3-cleaved Tau Accumulation and Blood-brain Barrier Damage in the Corpus Callosum after Traumatic Brain Injury in Rats.
Traumatic brain injury (TBI) may be a significant risk factor for development of neurodegenerative disorders such as chronic traumatic encephalopathy (CTE), post-traumatic epilepsy (PTE), and Alzheimer's (AD) and Parkinson's (PD) diseases. Chronic TBI is associated with several pathological features that are also characteristic of neurodegenerative diseases, including tau pathologies, caspase-3-mediated apoptosis, neuroinflammation, and microvascular alterations. The goal of this study was to evaluate changes following TBI in cleaved-caspase-3 and caspase-3-cleaved tau truncated at Asp421, and their relationships to cellular markers potentially associated with inflammation and blood-brain (BBB) barrier damage. ⋯ Increases in cleaved-caspase-3 in the corpus callosum were accompanied by accumulation of caspase-3-cleaved tau, with increasing perivascular aggregation 3 months after CCI. Immunofluorescence experiments further showed cellular co-localization of cleaved-caspase-3 with GFAP and CD68 and its adjacent localization with EBA, suggesting involvement of apoptosis and neuroinflammation in mechanisms of delayed BBB and microvascular damage that could contribute to white matter changes. This study also provides the first evidence that evolving upregulation of cleaved-caspase-3 is associated with accumulation of caspase-3-cleaved tau following experimental TBI, thus providing new insights into potential common mechanisms mediated by caspase-3 and underlying chronic TBI pathologies and neurodegenerative diseases.
-
Journal of neurotrauma · Jan 2018
Historical ArticleReflections on 35 Years of Journal of Neurotrauma.