Journal of neurotrauma
-
Journal of neurotrauma · May 2017
Time-Dependent Discrepancies between Assessments of Sensory Function after Incomplete Cervical Spinal Cord Injury.
We recently demonstrated that the electrical perceptual threshold (EPT) examination reveals spared sensory function at lower spinal segments compared with the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) examination in humans with chronic incomplete cervical spinal cord injury (SCI). Here, we investigated whether discrepancies in sensory function detected by both sensory examinations change over time after SCI. Forty-five participants with acute (<1 year), chronic (≥1-10 years), and extended-chronic (>10 years) incomplete cervical SCI and 30 control subjects were tested on dermatomes C2-T4 bilaterally. ⋯ A negative correlation was found between differences in EPT and ISNCSCI sensory levels and time post-injury. These observations indicate that discrepancies between EPT and ISNCSCI sensory scores are time-dependent, with the EPT revealing impaired sensory function above, below, or at the same spinal segment as the ISNCSCI examination. We propose that the EPT is a sensitive tool to assess changes in sensory function over time after incomplete cervical SCI.
-
Journal of neurotrauma · May 2017
Interlimb coordination during tied-belt and transverse split-belt locomotion before and after an incomplete spinal cord injury.
Coordination between the arms/forelimbs and legs/hindlimbs is often impaired in humans and quadrupedal mammals after incomplete spinal cord injury. In quadrupeds, the forelimbs often take more steps than the hindlimbs, producing a two-to-one forelimb-hindlimb (2-1 FL-HL) coordination. In locomotor performance scales, this is generally considered a loss of FL-HL coordination. ⋯ In conclusion, the results suggest that neural communication persists after an incomplete spinal cord injury, despite an unequal number of steps between the forelimbs and hindlimbs, and that interlimb coordination can be modulated by having the forelimbs or hindlimbs move at a faster frequency. We propose that locomotor recovery scales incorporate more sensitive methods to quantify FL-HL coordination, to better reflect residual functional capacity and possible cervicolumbar neural communication. Lastly, devising training protocols that make use of the bidirectional influences of the cervical and lumbar locomotor pattern generators could strengthen interlimb coordination and promote locomotor recovery.
-
Journal of neurotrauma · Apr 2017
Driving after concussion: Is it safe to drive after symptoms resolve?
Post-concussion impairments may result in unsafe driving performance, but little research is available to guide consensus on when concussed individuals should return to driving. The purpose of this study was to compare driving performance between individuals with and without a concussion and to explore relationships between neuropsychological and driving performance. Fourteen participants with concussion (age 20.2 ± 0.9 years old) and 14 non-concussed age- and driving experience-matched controls (age 20.4 ± 1.1 years old) completed a graded symptom checklist, a brief neuropsychological exam, and a 20.5 km driving simulation task. ⋯ Despite being asymptomatic, concussed participants exhibited poorer vehicle control, especially when navigating curves. Driving impairments may persist beyond when individuals with a concussion have returned to driving. Our study provides preliminary guidance regarding which neuropsychological functions may best indicate driving impairment following concussion.
-
Journal of neurotrauma · Apr 2017
Mild Traumatic Brain Injury: Longitudinal study of cognition, functional status, and post-traumatic symptoms.
More than 75% of traumatic brain injuries (TBIs) seeking medical attention are mild, and outcome in that group is heterogeneous. Until sensitive and valid biomarkers are identified, methods are needed to classify mild TBI into more homogeneous subgroups. Four hundred twenty-one adults with mild TBI were divided into groups based on Glasgow Coma Scale (GCS) 13-15 without computed tomography (CT) abnormalities, GCS 15 with CT abnormalities, and GCS 13-14 with CT abnormalities, and were compared with 120 trauma controls on 1-month and 1-year outcomes. ⋯ Mean percent of total post-traumatic symptoms endorsed as new or worse and percent endorsing three or more symptoms differed significantly (p < 0.001), with each TBI subgroup reporting significantly more symptoms than the trauma controls at both 1 month and 1 year. In conclusion, this subgrouping improves granularity within mild TBI. While most neuropsychological and functional differences abate by 1 year, reporting three or more post-traumatic symptoms remain for about half of individuals.