Journal of neurotrauma
-
Journal of neurotrauma · Mar 2017
Characterization of the antibody response after cervical spinal cord injury.
The immune system plays a critical and complex role in the pathobiology of spinal cord injury (SCI), exerting both beneficial and detrimental effects. Increasing evidence suggests that there are injury level-dependent differences in the immune response to SCI. Patients with traumatic SCI have elevated levels of circulating autoantibodies against components of the central nervous system, but the role of these antibodies in SCI outcomes remains unknown. ⋯ Further, increased levels of secreted IgG antibodies and enhanced proliferation of T-cells in splenocyte cultures from injured rats were found. These findings suggest the potential development of autoantibody responses following cSCI in the rat. The impact of the post-traumatic antibody responses on functional outcomes of cSCI is a critical topic that requires further investigation.
-
Journal of neurotrauma · Mar 2017
Spinal cord injury suppresses cutaneous inflammation: implications for peripheral wound healing.
People who suffer a traumatic spinal cord injury (SCI) are at increased risk for developing dermatological complications. These conditions increase cost of care, incidence of rehospitalization, and the risk for developing other infections. The consequences of dermatological complications after SCI are likely exacerbated further by post-injury deficits in neural-immune signaling. ⋯ Radiant efficiency data were confirmed using magnetic resonance imaging (MRI), and together the data indicate that SCI significantly impairs subcutaneous inflammation. Future studies should determine whether enhancing local inflammation or boosting systemic immune function can improve the rate or efficiency of cutaneous wound healing in individuals with SCI. Doing so also could limit wound infections or secondary complications of impaired healing after SCI.
-
Journal of neurotrauma · Mar 2017
Mean arterial blood pressure management of acute spinal cord injured patients during the pre-hospital and early admission period.
The optimization and maintenance of mean arterial blood pressure (MAP) and the general avoidance of systemic hypotension for the first 5-7 days following acute traumatic spinal cord injury (tSCI) is considered to be important for minimizing secondary spinal cord ischemic damage. The characterization of hemodynamic parameters in the immediate post-injury stage prior to admission to a specialized spine unit has not been previously reported. Here we describe the blood pressure management of 40 acute tSCI patients in the early post-injury phases of care prior to their arrival in a specialized spinal injury high dependency unit (HDU), intensive care unit (ICU), or operating room (OR). ⋯ Despite having a mean calculated MAP of 83.3 mm Hg in the emergency room of the tertiary hospital, 40% of the MAP measurements were <80 mm Hg. Although stringent monitoring and management of MAP may be facilitated and adhered to in a spinal HDU, ICU, or OR, it is important to recognize that acute traumatic SCI patients may experience many periods of relative hypotension prior to their arrival in such specialized units. This study highlights the need for education and awareness to optimize the hemodynamic management of acute SCI patients during the immediate post-injury period.
-
Journal of neurotrauma · Mar 2017
A Mouse Model of Bilateral Cervical Contusion-Compression Spinal Cord Injury.
Cervical spinal cord injury (cSCI) occurs in over half of all cases of traumatic spinal cord injury (SCI), yet we lack therapies that can generate significant functional recovery in these patients. The development of animal models of cSCI will aid in the pre-clinical assessment of therapies and in understanding basic pathophysiological mechanisms. Here, we describe a clinically relevant model of cervical contusion-compression injury in the mouse. ⋯ Volumetric analysis of protein kinase C gamma (PKCgamma)-stained axons revealed that this injury results in significant damage to the corticospinal tract caudal to the injury site. Finally, we used quantitative real-time polymerase chain reaction to show that genes associated with inflammation and glial scarring are upregulated as a result of injury. This study confirms that we can effectively model bilateral cervical injury in the mouse and provides a framework for future studies using this model to assess therapies.